Have a personal or library account? Click to login
Improving TerraClimate hydroclimatic data accuracy with XGBoost for regions with sparse gauge networks: A case study of the Meknes plateau and the Middle Atlas Causse, Morocco Cover

Improving TerraClimate hydroclimatic data accuracy with XGBoost for regions with sparse gauge networks: A case study of the Meknes plateau and the Middle Atlas Causse, Morocco

Open Access
|Apr 2025

References

  1. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5:1–12, doi:10.1038/sdata.2017.191.
  2. Abdullah, M. and Al-Ansari, N. (2022). Missing rainfall data estimation—an approach to investigate different methods: case study of Baghdad. ArabianJournalofGeosciences, 15:1740, doi:10.1007/s12517-022-10995-6.
  3. Adnan, R. M., Mirboluki, A., Mehraein, M., and et al. (2024). Improved prediction of monthly streamflow in a mountainous region by Metaheuristic-Enhanced deep learning and machine learning models using hydroclimatic data. Theoretical and Applied Climatology, 155:205–228, doi:10.1007/s00704-023-04624-9.
  4. Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J. (2003). Guidance on metadata and homogenization. Wmo Td, 1186:1–53.
  5. Aguilar, E., Peterson, T. C., Obando, P. R., Frutos, R., Retana, J. A., Solera, M., Soley, J., Garcia, I. G., Araujo, R. M., Santos, A. R., et al. (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. Journal of Geophysical Research: Atmospheres, 110, doi:10.1029/2005jd006119.
  6. Aieb, A., Madani, K., Scarpa, M., Bonaccorso, B., and Lefsih, K. (2019). A new approach for processing climate missing databases applied to daily rainfall data in Soummam watershed, Algeria. Heliyon, 5:e01247, doi:10.1016/j.heliyon.2019.e01247.
  7. Alexandris, S. (2013). Evapotranspiration: An overview. Ali, S., Liu, D., Fu, Q., Cheema, M. J. M., Pal, S. C., Arshad, A., Pham, Q. B., and Zhang, L. (2022). Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. Journal of Hydrology, 612:128295, doi:10.1016/j.jhydrol.2022.128295.
  8. Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300:D05109.
  9. Amiri, M. A. and Mesgari, M. S. (2017). Modeling the spatial and temporal variability of precipitation in northwest Iran. Atmosphere, 8:254, doi:10.3390/atmos8120254.
  10. Amraoui, F. (2005). Contribution à la connaissance des aquifères karstiques: Cas du Lias de la plaine du Sais et du Causse Moyen Atlasique tabulaire (Maroc). PhD thesis, Doctorat d’Atat, Université Hassan II, Casablanca.
  11. Beaulieu, C., Ouarda, T. B. M. J., and Seidou, O. (2007). Synthèse des techniques d’homogénéisation des séries climatiques et analyse d’applicabilité aux séries de précipitations. Hydrological sciences journal, 52:18–37, doi:10.1623/hysj.52.1.18.
  12. Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Dijk, A. I. J. M. V., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21:6201–6217, doi:10.5194/hess-21-6201-2017.
  13. Bentayeb, A. and Leclerc, C. (1977). Le Causse moyen atlasique. RessourcesenEauxduMaroc,Tome3,DomainesAtlasiquesetSud- Atlasiques, page 37–66.
  14. Bonnet, O. (1970). Calculautomatiquedes”bilansd’eau”mensuels et annuels par les méthodes de Thornthwaite et de Turc. BRGM; Orleans-la Source.
  15. Brandsma, T. and Buishand, T. A. (1998). Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling. Hydrology and Earth System Sciences, 2:195–209, doi:10.5194/hess-2-195-1998.
  16. Castellani, C. (1986). Régionalisation des précipitations annuelles par la méthode de la régression linéaire simple: l’exemple des Alpes du Nord. Revue de géographie alpine, 74:393–403, doi:10.3406/rga.1986.2658.
  17. Chen, H., Liu, H., Chen, X., and Qiao, Y. (2020). Analysis on impacts of hydro-climatic changes and human activities on available water changes in Central Asia. Science of the Total Environment, 737:139779, doi:10.1016/j.scitotenv.2020.139779.
  18. Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, page 785–794. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, doi:10.1145/2939672.2939785.
  19. Cherif, M., Diaz-Cassou, J., and Megevand, C. (2023). Climate Change and Development in Morocco. Morocco’s Quest for Stronger and Inclusive Growth, page 121.
  20. Chowdhury, R., Mohamed, M. M. A., and Murad, A. (2016). Variability of extreme hydro-climate parameters in the North-Eastern Region of United Arab Emirates. ProcediaEngineering, 154:639–644, doi:10.1016/j.proeng.2016.07.563.
  21. Daguin, F. (1927). Contribution à l’étude de la région prérifaine (Maroc occidental). Technical report.
  22. Ebert, E. E. (2007). Methods for verifying satellite precipitation estimates. Springer, doi:10.1007/978-1-4020-5835-6_27.
  23. Eddif, A., Ouazzani, H., Sadkaoui, I., Tajdi, A., Aghbal, A., and Hamid, A. (2018). La chaine volcanique du Moyen Atlas au Maroc: patrimoine géologique encore peu connu. International Journal of Innovation and Applied Studies, 24:117–129.
  24. Er-Raki, S., Chehbouni, A., Guemouria, N., Duchemin, B., Ezzahar, J., and Hadria, R. (2007). Combining FAO- 56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semiarid region. Agricultural water management, 87:41–54, doi:10.1016/j.agwat.2006.02.004.
  25. Ezzaouini, M. A., Mahé, G., Kacimi, I., Bilali, A. E., Zerouali, A., and Nafii, A. (2022). Predicting daily suspended sediment load using machine learning and NARX hydroclimatic inputs in semi-arid environment. Water, 14:862, doi:10.3390/w14060862.
  26. Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., and Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy conversion and management, 164:102–111, doi:10.1016/j.enconman.2018.02.087.
  27. Faraj, H., Beaudet, G., Combes, M., Couvreur, G., Ionesco, T., Martin, J., Missante, G., Naciri, M., Smeyers, F., and Watteeuw, R. (1966). Le Sais.
  28. Ghozat, A., Sharafati, A., and Hosseini, S. A. (2021). Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theoretical and applied climatology, 143:211–225, doi:10.1007/s00704-020-03428-5.
  29. Han, D., Wang, G., Liu, T., Xue, B.-L., Kuczera, G., and Xu, X. (2018). Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. Journal of Hydrology, 563:766–777, doi:10.1016/j.jhydrol.2018.06.048.
  30. Hanchane, M., Kessabi, R., Krakauer, N. Y., Sadiki, A., Kassioui, J. E., and Aboubi, I. (2023). Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco). Climate, 11:120, doi:10.3390/cli11060120.
  31. Hao, R. and Bai, Z. (2023). Comparative study for daily stream-flow simulation with different machine learning methods. Water, 15:1179, doi:10.3390/w15061179.
  32. Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer, doi:10.1007/978-0-387-21606-5.
  33. Herrera-Puebla, J., Meneses-Peralta, J., Duarte-Diaz, C., González-Robaina, F., and Hervis-Granda, G. (2020). Determination of Crop Coefficients for Estimating Evapotranspiration in a Paddy Field in Cuba. Revista Ciencias Técnicas Agropecuarias, 29:05–20.
  34. Karmouda, N., Kacimi, I., ElKharrim, M., Brirhet, H., and Hamidi, M. (2022). Geo-statistical and hydrological assessment of three satellite precipitation products over Ouergha basin (Northern Morocco). Arabian Journal of Geosciences, 15:235, doi:10.1007/s12517-021-09124-6.
  35. Kessabi, R., Hanchane, M., Caloiero, T., Pellicone, G., Addou, R., and Krakauer, N. Y. (2023). Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology, 10:37, doi:10.3390/hydrology10020037.
  36. Kinouchi, T., Sayama, T., et al. (2021). A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020. Journalof Hydrology, 603:126868, doi:10.1016/j.jhydrol.2021.126868.
  37. Kofidou, M., Stathopoulos, S., and Gemitzi, A. (2023). Review on spatial downscaling of satellite derived precipitation estimates. Environmental Earth Sciences, 82:424, doi:10.1007/s12665-023-11115-7.
  38. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, volume 14, page 1137–1145. Ijcai.
  39. Kohler, M. A. (1949). On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments. Bulletin of the American Meteorological Society, 30:188–195, doi:10.1175/1520-0477-30.5.188.
  40. Koppen, W. (1936). Das geographische System de Klimate. Handbuch der klimatologie.
  41. Laurent, H., Jobard, I., and Toma, A. (1998). Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmospheric Research, 47:651–670, doi:10.1016/s0169-8095(98)00051-9.
  42. Lettenmaier, D. P. and Wood, E. F. (1993). Hydrologic forecasting.
  43. Li, P., Stuart, E. A., and Allison, D. B. (2015). Multiple imputation: a flexible tool for handling missing data. Jama, 314:1966–1967, doi:10.1001/jama.2015.15281.
  44. Mjejra, M., Dubreuil, V., and Hénia, L. (2014). Evaluation de l’évapotranspiration maximale par télédétection à moyenne résolution spatiale: cas du bassin versant de la Mejerda en Tunisie. In Actes du 27ème colloque de l’Association InternationaledeClimatologie, page 54–60. Actes du 27ème colloque de l’Association Internationale de Climatologie.
  45. Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., and Righetti, M. (2024). Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023). Environmental Modelling and Software, page 105971, doi:10.1016/j.envsoft.2024.105971.
  46. Ouatiki, H., Boudhar, A., and Chehbouni, A. (2021). The Suitability of Eight Spatial Rainfall Products to Simulate Daily Streamflow in Semi-Arid Watersheds using the HBV model. In EGU General Assembly Conference Abstracts, page EGU21–7428. EGU General Assembly Conference Abstracts, doi:10.5194/egusphere-egu21-7428.
  47. Rachdane, M., Khalki, E. M. E., Saidi, M. E., Nehmadou, M., Ahbari, A., and Tramblay, Y. (2022). Comparison of highresolution satellite precipitation products in sub-saharan Morocco. Water, 14:3336, doi:10.3390/w14203336.
  48. Rachdane, M., Khalki, M. E. E., Saidi, M. E., Nehmadou, M., Ahbari, A., and Tramblay, Y. (2023). Assessment of six satellite precipitation products in a Moroccan arid area. In EGU GeneralAssemblyConferenceAbstracts, page EGU–1808. EGU General Assembly Conference Abstracts, doi:10.5194/egusphereegu23-1808.
  49. Rachidi, S., Mazoudi, E., Houssine, E. L., Alami, J. E., Jadoud, M., and Er-Raki, S. (2023). Assessment and comparison of satellite-based rainfall products: validation by hydrological modeling using ANN in a semi-arid zone. Water, 15:1997, doi:10.3390/w15111997.
  50. Runtunuwu, E. (2007). Penentuan koefisien tanaman menggunakan data pengamatan iklim dan index vegetasi dari setelit NOAA/AVHRR. Jurnal Ilmu-Ilmu Pertanian Indonesia, 9:165–171, doi:10.31186/jipi.9.2.165-171.
  51. Saeedi, M., Sharafati, A., Brocca, L., and Tavakol, A. (2022). Estimating rainfall depth from satellite-based soil moisture data: A new algorithm by integrating SM2RAIN and the analytical net water flux models. Journal of Hydrology, 610:127868, doi:10.1016/j.jhydrol.2022.127868.
  52. Sebou Hydraulic Basin Agency (2024). Nappe des Causses moyens Atlasiques. https://www.abhsebou.ma/presentation-du-bassin/eaux-souterraines/nappe-descausses-moyens-atlasiques/.
  53. Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, page 517–524. Proceedings of the 1968 23rd ACM national conference, doi:10.1145/800186.810616.
  54. Shrestha, N. K. and Shukla, S. (2015). Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agricultural and forest meteorology, 200:172–184, doi:10.1016/j.agrformet.2014.09.025.
  55. Tabyaoui, F. (2005). Contribution à l’étude hydrogéochimique des eaux de la nappe phréatique du plateau de Meknès (MAROC). pages 53–62.
  56. Tan, M. L., Gassman, P. W., and Cracknell, A. P. (2017). Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water, 9:229, doi:10.3390/w9030229.
  57. Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38:55–94, doi:10.2307/210739.
  58. Vörösmarty, C. J., Federer, C. A., and Schloss, A. L. (1998). Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology, 207:147–169, doi:10.1016/s0022-1694(98)00109-7.
  59. Wang, H. and Xuan, Y. (2022). A spatial pattern extraction and recognition toolbox supporting machine learning applications on large hydroclimatic datasets. Remote Sensing, 14:3823, doi:10.3390/rs14153823.
  60. World Bank Group (2022a). Note Technique Pénurie d’eau et sécheresses. https://documents1.worldbank.org/curated/en/099052223171010874/pdf/P177376089c18001f08b5c09e715216fca3.pdf.
  61. World Bank Group (2022b). Rapport Climat et Développements. https://openknowledge.worldbank.org/server/api/core/bitstreams/0a549cdc-c5c8-53a0-a570-078800be7e02/content.
  62. Xu, T., Deines, J. M., Kendall, A. D., Basso, B., and Hyndman, D. W. (2019). Addressing challenges for mapping irrigated fields in subhumid temperate regions by integrating remote sensing and hydroclimatic data. RemoteSensing, 11:370, doi:10.4211/hs.3766845be72d45969fca21530a67bb2d.
  63. Yu, S., Chen, Z., Yu, B., Wang, L., Wu, B., Wu, J., and Zhao, F. (2020). Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China. Scienceofthetotalenvironment, 725:138229, doi:10.1016/j.scitotenv.2020.138229.
DOI: https://doi.org/10.2478/rgg-2025-0009 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 85 - 98
Submitted on: Aug 11, 2024
Accepted on: Mar 19, 2025
Published on: Apr 28, 2025
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Yassine Hammoud, Youssef Allali, Abderrahim Saadane, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.