Have a personal or library account? Click to login
Determination of geometric parameters of highways using classical and modern technologies Cover

References

  1. Bárta, L., Bureš, J., and Švábensk‘y, O. (2021). Geodetic monitoring of bridge structures in operation. In Contributions to International Conferences on Engineering Surveying: 8th INGEO International Conference on Engineering Surveying and 4th SIG Symposium on Engineering Geodesy, pages 198–210. Springer, doi:10.1007/978-3-030-51953-7_17.
  2. Bazhenov, A. (2021). Information technologies in road construction. BIM Modelling Construction And Architecture Problems, pages 72–76, doi:10.23968/BIMAC.2021.008. (original in Russian).
  3. Blachowski, J., Milczarek, W., and Stefaniak, P. (2014). Deformation information system for facilitating studies of mining-ground deformations, development, and applications. Natural Hazards and Earth System Sciences, 14(7):1677–1689, doi:10.5194/nhess-14-1677-2014.
  4. Boyarchuk, M., Zhurkin, I., Nepoklonov, V., and Orlov, P. Y. (2022). Geoinformational technologies analysis for studying the visualization of the Earths surface vertical and horizontal deformations. Geodesy and Cartography (Lithuania), 988(10):53–61, doi:10.22389/0016-7126-2022-988-10-53-61.
  5. Braun, J. and Štroner, M. (2014). Geodetic measurement of longitudinal displacements of the railway bridge. Geoinformatics FCE CTU, 12:16–21, doi:10.14311/gi.12.3.
  6. Butenko, E. and Nevoit, N. (2021). Peculiarities of geodesic works with the use of UAVs for the needs of land management. Zemleustrij, kadastr i monitoring zemel’, (1), doi:10.31548/zemleustriy2021.01.08.
  7. Catania, P., Comparetti, A., Febo, P., Morello, G., Orlando, S., Roma, E., and Vallone, M. (2020). Positioning accuracy comparison of GNSS receivers used for mapping and guidance of agricultural machines. Agronomy, 10(7):924, doi:10.3390/agronomy10070924.
  8. Cefalo, R., Grandi, G., Roberti, R., and Sluga, T. (2017). Extraction of road geometric parameters from high resolution remote sensing images validated by GNSS/INS geodetic techniques. In Computational Science and Its Applications–ICCSA 2017: 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part IV 17, pages 181–195. Springer, doi:10.1007/978-3-319-62401-3_14.
  9. Cignetti, M., Guenzi, D., Ardizzone, F., Allasia, P., and Giordan, D. (2019). An open-source web platform to share multisource, multisensor geospatial data and measurements of ground deformation in mountain areas. ISPRS International Journal of Geo-Information, 9(1):4, doi:10.3390/ijgi9010004.
  10. Cruz, O. G. D., Mendoza, C. A., and Lopez, K. D. (2021). International roughness index as road performance indicator: A literature review. In IOP conference series: earth and environmental science, volume 822, page 012016. IOP Publishing, doi:10.1088/1755-1315/822/1/012016.
  11. Di Graziano, A., Marchetta, V., and Cafiso, S. (2020). Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 7(5):639–651, doi:10.1016/j.jtte.2020.08.001.
  12. Elnabwy, M. T., Kaloop, M. R., and Elbeltagi, E. (2013). Talkha steel highway bridge monitoring and movement identification using RTK-GPS technique. Measurement, 46(10):4282–4292, doi:10.1016/j.measurement.2013.08.014.
  13. Golov, E., Evtyukov, S., Protsuto, M., Evtyukov, S., and Sorokina, E. (2022). Influence of the road surface roughness (according to the International Roughness Index) on road safety. Transportation research procedia, 63:999–1006, doi:10.1016/j.trpro.2022.06.099.
  14. Gorda, O. (2020). Topology of information space in construction. Building production, 2(70):39–44. (original in Ukrainian).
  15. Guan, H., Li, J., Cao, S., and Yu, Y. (2016). Use of mobile LiDAR in road information inventory: A review. International Journal of Image and Data Fusion, 7(3):219–242, doi:10.1080/19479832.2016.1188860.
  16. Han, C., Han, T., Ma, T., Tong, Z., and Wang, S. (2023). A BIM-based framework for road construction quality control and quality assurance. International Journal of Pavement Engineering, 24(1):2209903, doi:10.1080/10298436.2023.2209903.
  17. Han, D., Lee, S. B., Song, M., and Cho, J. S. (2021). Change detection in unmanned aerial vehicle images for progress monitoring of road construction. Buildings, 11(4):150, doi:10.3390/buildings11040150.
  18. Hryhorovskyi, P., Gorda, O., and Chukanova, N. (2020). Information environments in construction. Building production, 2:15–19, doi:10.36750/2524-2555.68. (original in Ukrainian).
  19. Karan, E. P., Sivakumar, R., Irizarry, J., and Guhathakurta, S. (2014). Digital modeling of construction site terrain using remotely sensed data and geographic information systems analyses. Journal of construction engineering and management, 140(3):04013067, doi:10.1061/(ASCE)CO.1943-7862.0000822.
  20. Katkalo, Y. (2012). Determination of actual radii on curves of motor-ways by electronic tacheometer. Bulletin of the Belarusian-Russian University, 3(36):89–95. (original in Russian).
  21. Kovrov, A. (2022). About the ways to improve the accuracy of mobile laser scanning results. Vestnik of North-Eastern Federal University. Series “Earth Sciences”, (1(25)):10–18, doi:10.25587/svfu.2022.25.1.009.
  22. Kuzmin, Y. O. (2019). Recent geodynamics: from crustal movements to monitoring critical objects. Izvestiya, Physics of the Solid Earth, 55:65–86, doi:10.1134/S106935131901004X.
  23. Lobatskaya, R. and Strelchenko, I. (2016). GIS-based analysis of fault patterns in urban areas: A case study of Irkutsk city, Russia. Geoscience Frontiers, 7(2):287–294, doi:10.1016/j.gsf.2015.07.004.
  24. Mill, T., Ellmann, A., Kiisa, M., Idnurm, J., Idnurm, S., Horemuz, M., and Aavik, A. (2015). Geodetic monitoring of bridge deformations occurring during static load testing. The baltic journal of road and bridge engineering, 10(1):17–27, doi:10.3846/bjrbe.2015.03.
  25. Múčka, P. (2017). International Roughness Index specifications around the world. Road materials and pavement design, 18(4):929–965, doi:10.1080/14680629.2016.1197144.
  26. Muñoz-Salinas, E., Renschler, C., and Palacios, D. (2009). A GIS-based method to determine the volume of lahars: Popocatépetl volcano, Mexico. Geomorphology, 111(1-2):61–69, doi:10.1016/j.geomorph.2008.09.028.
  27. Nikitin, A. (2018). Determination of motor roads geometry parameters with GNSS receivers. In Transport of the Asia-Pacific Region, 2(15):16–17. (original in Russian).
  28. Pomortseva, O., Kobzan, S., Yevdokimov, A., and Kukhar, M. (2020). Use of geoinformation systems in environmental monitoring. In The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020), E3S Web of Conferences, volume 166, page 01002. EDP Sciences, doi:10.1051/e3sconf/202016601002.
  29. Prokhorov, A. and Medvedev, A. (2022). Operational mapping of moving objects using the ICARUS satellite telemetry system. Geodesy and Cartography, 987(9):47–56, doi:10.22389/0016-7126-2022-987-9-47-56.
  30. Ranyal, E., Sadhu, A., and Jain, K. (2022). Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22(8):3044, doi:10.3390/s22083044.
  31. Raza, S., Al-Kaisy, A., Teixeira, R., and Meyer, B. (2022). The role of GNSS-RTN in transportation applications. Encyclopedia, 2(3):83, doi:10.3390/encyclopedia2030083.
  32. Samsonov, S. and Baryakh, A. (2020). Estimation of deformation intensity above a flooded potash mine near Berezniki (Perm Krai, Russia) with SAR interferometry. Remote Sensing, 12(19):3215, doi:10.3390/rs12193215.
  33. Scalco, L., Bordin, F., de Souza, E. M., Brum, D., Racolte, G., Marques Jr, A., da Silveira Jr, L. G., and Veronez, M. R. (2023). Improving geometric road design through a virtual reality visualization technique. TRANSPORTES, 31(1):e2838–e2838, doi:10.58922/transportes.v31i1.2838.
  34. Shutin, M. D. and Dolgov, D. V. (2019). Creating a digital passport of the object during the survey of transport infrastructure. In 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 1485–1487. IEEE, doi:10.1109/EIConRus.2019.8657299.
  35. Taşçi, L. (2015). Deformation monitoring in steel arch bridges through close-range photogrammetry and the finite element method. Experimental techniques, 39:3–10, doi:10.1111/ext.12022.
  36. Tikhomirov, P. V., Skrypnykov, A. V., A, V. I., Kazachek, M. N., Zelikov, V. A., and Bondarev, A. B. (2022). Information-intelligent system for improving geometric control of the construction of road rounds. Izvestiya SPbLTA, (239):161–171, doi:10.21266/2079-4304.2022.239.161-171.
  37. Vatseva, R., Solakov, D., Tcherkezova, E., Simeonova, S., and Trifonova, P. (2013). Applying GIS in seismic hazard assessment and data integration for disaster management. Intelligent Systems for Crisis Management: Geo-information for Disaster Management (Gi4DM) 2012, pages 171–183, doi:0.1007/978-3-642-33218-0_13.
DOI: https://doi.org/10.2478/rgg-2025-0005 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 30 - 38
Submitted on: Dec 29, 2024
Accepted on: Jan 28, 2025
Published on: Mar 21, 2025
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Zhuldyz Askarovna Alpyspayeva, Natalya Aleksandrovna Parkhomenko, Saule Kazhapovna Makenova, Ewa Joanna Świerczyńska, Maria Elżbieta Kowalska, Janina Zaczek-Peplinska, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.