References
- Bárta, L., Bureš, J., and Švábensk‘y, O. (2021). Geodetic monitoring of bridge structures in operation. In Contributions to International Conferences on Engineering Surveying: 8th INGEO International Conference on Engineering Surveying and 4th SIG Symposium on Engineering Geodesy, pages 198–210. Springer, doi:10.1007/978-3-030-51953-7_17.
- Bazhenov, A. (2021). Information technologies in road construction. BIM Modelling Construction And Architecture Problems, pages 72–76, doi:10.23968/BIMAC.2021.008. (original in Russian).
- Blachowski, J., Milczarek, W., and Stefaniak, P. (2014). Deformation information system for facilitating studies of mining-ground deformations, development, and applications. Natural Hazards and Earth System Sciences, 14(7):1677–1689, doi:10.5194/nhess-14-1677-2014.
- Boyarchuk, M., Zhurkin, I., Nepoklonov, V., and Orlov, P. Y. (2022). Geoinformational technologies analysis for studying the visualization of the Earths surface vertical and horizontal deformations. Geodesy and Cartography (Lithuania), 988(10):53–61, doi:10.22389/0016-7126-2022-988-10-53-61.
- Braun, J. and Štroner, M. (2014). Geodetic measurement of longitudinal displacements of the railway bridge. Geoinformatics FCE CTU, 12:16–21, doi:10.14311/gi.12.3.
- Butenko, E. and Nevoit, N. (2021). Peculiarities of geodesic works with the use of UAVs for the needs of land management. Zemleustrij, kadastr i monitoring zemel’, (1), doi:10.31548/zemleustriy2021.01.08.
- Catania, P., Comparetti, A., Febo, P., Morello, G., Orlando, S., Roma, E., and Vallone, M. (2020). Positioning accuracy comparison of GNSS receivers used for mapping and guidance of agricultural machines. Agronomy, 10(7):924, doi:10.3390/agronomy10070924.
- Cefalo, R., Grandi, G., Roberti, R., and Sluga, T. (2017). Extraction of road geometric parameters from high resolution remote sensing images validated by GNSS/INS geodetic techniques. In Computational Science and Its Applications–ICCSA 2017: 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part IV 17, pages 181–195. Springer, doi:10.1007/978-3-319-62401-3_14.
- Cignetti, M., Guenzi, D., Ardizzone, F., Allasia, P., and Giordan, D. (2019). An open-source web platform to share multisource, multisensor geospatial data and measurements of ground deformation in mountain areas. ISPRS International Journal of Geo-Information, 9(1):4, doi:10.3390/ijgi9010004.
- Cruz, O. G. D., Mendoza, C. A., and Lopez, K. D. (2021). International roughness index as road performance indicator: A literature review. In IOP conference series: earth and environmental science, volume 822, page 012016. IOP Publishing, doi:10.1088/1755-1315/822/1/012016.
- Di Graziano, A., Marchetta, V., and Cafiso, S. (2020). Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 7(5):639–651, doi:10.1016/j.jtte.2020.08.001.
- Elnabwy, M. T., Kaloop, M. R., and Elbeltagi, E. (2013). Talkha steel highway bridge monitoring and movement identification using RTK-GPS technique. Measurement, 46(10):4282–4292, doi:10.1016/j.measurement.2013.08.014.
- Golov, E., Evtyukov, S., Protsuto, M., Evtyukov, S., and Sorokina, E. (2022). Influence of the road surface roughness (according to the International Roughness Index) on road safety. Transportation research procedia, 63:999–1006, doi:10.1016/j.trpro.2022.06.099.
- Gorda, O. (2020). Topology of information space in construction. Building production, 2(70):39–44. (original in Ukrainian).
- Guan, H., Li, J., Cao, S., and Yu, Y. (2016). Use of mobile LiDAR in road information inventory: A review. International Journal of Image and Data Fusion, 7(3):219–242, doi:10.1080/19479832.2016.1188860.
- Han, C., Han, T., Ma, T., Tong, Z., and Wang, S. (2023). A BIM-based framework for road construction quality control and quality assurance. International Journal of Pavement Engineering, 24(1):2209903, doi:10.1080/10298436.2023.2209903.
- Han, D., Lee, S. B., Song, M., and Cho, J. S. (2021). Change detection in unmanned aerial vehicle images for progress monitoring of road construction. Buildings, 11(4):150, doi:10.3390/buildings11040150.
- Hryhorovskyi, P., Gorda, O., and Chukanova, N. (2020). Information environments in construction. Building production, 2:15–19, doi:10.36750/2524-2555.68. (original in Ukrainian).
- Karan, E. P., Sivakumar, R., Irizarry, J., and Guhathakurta, S. (2014). Digital modeling of construction site terrain using remotely sensed data and geographic information systems analyses. Journal of construction engineering and management, 140(3):04013067, doi:10.1061/(ASCE)CO.1943-7862.0000822.
- Katkalo, Y. (2012). Determination of actual radii on curves of motor-ways by electronic tacheometer. Bulletin of the Belarusian-Russian University, 3(36):89–95. (original in Russian).
- Kovrov, A. (2022). About the ways to improve the accuracy of mobile laser scanning results. Vestnik of North-Eastern Federal University. Series “Earth Sciences”, (1(25)):10–18, doi:10.25587/svfu.2022.25.1.009.
- Kuzmin, Y. O. (2019). Recent geodynamics: from crustal movements to monitoring critical objects. Izvestiya, Physics of the Solid Earth, 55:65–86, doi:10.1134/S106935131901004X.
- Lobatskaya, R. and Strelchenko, I. (2016). GIS-based analysis of fault patterns in urban areas: A case study of Irkutsk city, Russia. Geoscience Frontiers, 7(2):287–294, doi:10.1016/j.gsf.2015.07.004.
- Mill, T., Ellmann, A., Kiisa, M., Idnurm, J., Idnurm, S., Horemuz, M., and Aavik, A. (2015). Geodetic monitoring of bridge deformations occurring during static load testing. The baltic journal of road and bridge engineering, 10(1):17–27, doi:10.3846/bjrbe.2015.03.
- Múčka, P. (2017). International Roughness Index specifications around the world. Road materials and pavement design, 18(4):929–965, doi:10.1080/14680629.2016.1197144.
- Muñoz-Salinas, E., Renschler, C., and Palacios, D. (2009). A GIS-based method to determine the volume of lahars: Popocatépetl volcano, Mexico. Geomorphology, 111(1-2):61–69, doi:10.1016/j.geomorph.2008.09.028.
- Nikitin, A. (2018). Determination of motor roads geometry parameters with GNSS receivers. In Transport of the Asia-Pacific Region, 2(15):16–17. (original in Russian).
- Pomortseva, O., Kobzan, S., Yevdokimov, A., and Kukhar, M. (2020). Use of geoinformation systems in environmental monitoring. In The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020), E3S Web of Conferences, volume 166, page 01002. EDP Sciences, doi:10.1051/e3sconf/202016601002.
- Prokhorov, A. and Medvedev, A. (2022). Operational mapping of moving objects using the ICARUS satellite telemetry system. Geodesy and Cartography, 987(9):47–56, doi:10.22389/0016-7126-2022-987-9-47-56.
- Ranyal, E., Sadhu, A., and Jain, K. (2022). Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22(8):3044, doi:10.3390/s22083044.
- Raza, S., Al-Kaisy, A., Teixeira, R., and Meyer, B. (2022). The role of GNSS-RTN in transportation applications. Encyclopedia, 2(3):83, doi:10.3390/encyclopedia2030083.
- Samsonov, S. and Baryakh, A. (2020). Estimation of deformation intensity above a flooded potash mine near Berezniki (Perm Krai, Russia) with SAR interferometry. Remote Sensing, 12(19):3215, doi:10.3390/rs12193215.
- Scalco, L., Bordin, F., de Souza, E. M., Brum, D., Racolte, G., Marques Jr, A., da Silveira Jr, L. G., and Veronez, M. R. (2023). Improving geometric road design through a virtual reality visualization technique. TRANSPORTES, 31(1):e2838–e2838, doi:10.58922/transportes.v31i1.2838.
- Shutin, M. D. and Dolgov, D. V. (2019). Creating a digital passport of the object during the survey of transport infrastructure. In 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 1485–1487. IEEE, doi:10.1109/EIConRus.2019.8657299.
- Taşçi, L. (2015). Deformation monitoring in steel arch bridges through close-range photogrammetry and the finite element method. Experimental techniques, 39:3–10, doi:10.1111/ext.12022.
- Tikhomirov, P. V., Skrypnykov, A. V., A, V. I., Kazachek, M. N., Zelikov, V. A., and Bondarev, A. B. (2022). Information-intelligent system for improving geometric control of the construction of road rounds. Izvestiya SPbLTA, (239):161–171, doi:10.21266/2079-4304.2022.239.161-171.
- Vatseva, R., Solakov, D., Tcherkezova, E., Simeonova, S., and Trifonova, P. (2013). Applying GIS in seismic hazard assessment and data integration for disaster management. Intelligent Systems for Crisis Management: Geo-information for Disaster Management (Gi4DM) 2012, pages 171–183, doi:0.1007/978-3-642-33218-0_13.
