References
- Al-Durgham, K. and Habib, A. (2014). Association-matrix-based sample consensus approach for automated registration of terrestrial laser scans using linear features. Photogrammetric Engineering and Remote Sensing, 80(11):1029–1039, doi:10.14358/pers.80.11.1029.
- Błaszczak-Bąk, W., Janicka, J., Suchocki, C., Masiero, A., and Sobieraj-Żłobińska, A. (2020). Down-sampling of large LiDAR dataset in the context of off-road objects extraction. Geosciences, 10(6):219, doi:10.3390/geosciences10060219.
- Błaszczak-Bąk, W., Koppanyi, Z., and Toth, C. (2018). Reduction method for mobile laser scanning data. IS-PRS International Journal of Geo-Information, 7(7):285, doi:10.3390/ijgi7070285.
- Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T., and Janicka, J. (2023). Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement, 219:113286, doi:10.1016/j.measurement.2023.113286.
- Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., and Chen, Y. (2018). Registration of laser scanning point clouds: A review. Sensors, 18(5):1641, doi:10.3390/s18051641.
- Corradetti, A., Seers, T., Mercuri, M., Calligaris, C., Busetti, A., and Zini, L. (2022). Benchmarking different SfM-MVS photogrammetric and iOS LiDAR acquisition methods for the digital preservation of a short-lived excavation: A case study from an area of sinkhole related subsidence. Remote Sensing, 14(20):5187, doi:10.3390/rs14205187.
- Dörtbudak, E. B. and Akça, Ş. (2024). Comparing photogrammetry and smartphone LIDAR for 3D documentation: Kızılkoyun Necropolis case study. Advanced LiDAR, 4(1):19–27.
- Faugeras, O. and Hebert, M. (1986). The representation, recognition, and locating of 3-D objects. The International Journal of Robotics Research, 5(3):27–52, doi:10.1177/027836498600500302.
- Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, doi:10.1145/358669.358692.
- Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Noth-durft, A. (2021). Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129.
- Hu, Z., Chen, C., Yang, B., Wang, Z., Ma, R., Wu, W., and Sun, W. (2022). Geometric feature enhanced line segment extraction from large-scale point clouds with hierarchical topological optimization. International Journal of Applied Earth Observation and Geoinformation, 112:102858, doi:10.1016/j.jag.2022.102858.
- Labędź, P., Skabek, K., Ozimek, P., Rola, D., Ozimek, A., and Ostrowska, K. (2022). Accuracy verification of surface models of architectural objects from the iPad LiDAR in the context of photogrammetry methods. Sensors, 22(21):8504, doi:10.3390/s22218504.
- Li, P., Wang, R., Wang, Y., and Tao, W. (2020). Evaluation of the ICP algorithm in 3D point cloud registration. IEEE Access, 8:68030–68048, doi:10.1109/access.2020.2986470.
- Luetzenburg, G., Kroon, A., and Bjørk, A. A. (2021). Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Scienti c Reports, 11(1), doi:10.1038/s41598-021-01763-9.
- Luetzenburg, G., Kroon, A., Kjeldsen, K. K., Splinter, K. D., and Bjørk, A. A. (2024). High-resolution topographic surveying and change detection with the iPhone LiDAR. Nature Protocols, pages 1–22, doi:10.1038/s41596-024-01024-9.
- Mêda, P., Calvetti, D., and Sousa, H. (2023). Exploring the potential of iPad-LiDAR technology for building renovation diagnosis: A case study. Buildings, 13(2):456, doi:10.3390/buildings13020456.
- Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., Kuželka, K., Surový, P., Klimánek, M., Zięba-Kulawik, K., Bobrowski, R., and Liang, X. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 104:102512, doi:10.1016/j.jag.2021.102512.
- Razali, M., Idris, A., Razali, M., and Syafuan, W. (2022). Quality assessment of 3D point clouds on the different surface materials generated from iPhone LiDAR sensor. International Journal of Geoinformatics, 18(4):51–59, doi:10.52939/ijg.v18i4.2259.
- Suchocki, C. and Błaszczak-Bąk, W. (2019). Down-sampling of point clouds for the technical diagnostics of buildings and structures. Geosciences, 9(2):70, doi:10.3390/geosciences9020070.
- Tamimi, R. and Toth, C. (2024). Experiments with combining LiDAR and camera data acquired by UAS and smartphone to support mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1–2024:619–627, doi:10.5194/isprs-archives-xlviii-1-2024-619-2024.
- Tatsumi, S., Yamaguchi, K., and Furuya, N. (2022). ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods in Ecology and Evolution, 14(7):1603–1609, doi:10.1111/2041-210x.13900.
- Tavani, S., Billi, A., Corradetti, A., Mercuri, M., Bosman, A., Cuffaro, M., Seers, T., and Carminati, E. (2022). Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones. Earth-Science Reviews, 227:103969, doi:10.1016/j.earscirev.2022.103969.
- Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157.
- Vacca, G. (2023). 3D survey with Apple LiDAR sensor – Test and assessment for architectural and cultural heritage. Heritage, 6(2):1476–1501, doi:10.3390/heritage6020080.
- Wang, J., Wei, X., Wang, W., Wang, J., Peng, J., Wang, S., Zaheer, Q., You, J., Xiong, J., and Qiu, S. (2023). A multistation 3D point cloud automated global registration and accurate positioning method for railway tunnels. Structural Control and Health Monitoring, 2023:1–22, doi:10.1155/2023/6705090.
- Weinmann, M. et al. (2016). Reconstruction and analysis of 3D scenes: From Irregularly Distributed 3D Points to Object Classes. Springer, doi:10.1007/978-3-319-29246-5.
