References
- Ansari, K., Corumluoglu, O., and Yetkin, M. (2017). Projectivity, affine, similarity and euclidean coordinates transformation parameters from ITRF to EUREF in Turkey. Journal of Applied Geodesy, 11(1):53–61, doi:10.1515/jag-2016-0040.
- Ansari, K., Gyawali, P., Pradhan, P. M., and Park, K.-D. (2019). Coordinate transformation parameters in Nepal by using neural network and SVD methods. Journal of Geodetic Science, 9(1):22–28, doi:10.1515/jogs-2019-0003.
- Bektas, S. (2022). A new algorithm for 3D similarity transformation with dual quaternion. Arabian Journal of Geosciences, 15(14):1273, doi:10.1007/s12517-022-10457-z.
- Bektas, S. (2024). An expanded dual quaternion algorithm for 3D Helmert transformation and determination of the VCV matrix of the transformation’s parameters. Journal of Spatial Science, 69(2):665–680, doi:10.1080/14498596.2023.2274997.
- Doukas, I. D., Ampatzidis, D., and Kampouris, V. (2017). The validation of the transformation between an old geodetic reference frame and a modern reference frame, by using external space techniques sites: The case study of the hellenic geodetic reference system of 1987. Boletim de Ciências Geodésicas, 23(3):434–444, doi:10.1590/S1982-21702017000300029.
- Elshambaky, H., Kaloop, M. R., and Hu, J. W. (2018). A novel three-direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach. Arabian Journal of Geosciences, 11:1–14, doi:10.1007/s12517-018-3441-6.
- Hussain, R. Y. (2022). Coordinate transformation from Karbala 1979 and World Geodetic System 1984 to Iraqi Geospatial Reference System. Journal of Engineering and Sustainable Development, 26(3):73–83, doi:10.31272/jeasd.26.3.8.
- Ioannidou, S. and Pantazis, G. (2020). Helmert transformation problem. From Euler angles method to quaternion algebra. ISPRS International Journal of Geo-Information, 9(9):494, doi:10.3390/ijgi9090494.
- Ioannidou, S. and Pantazis, G. (2022). 3D Coordinate Transformation by using Quaternion Algebra, page 1–24. Book Publisher International, doi:10.9734/bpi/tier/v5/16305d.
- Kalu, I., Ndehedehe, C. E., Okwuashi, O., and Eyoh, A. E. (2022). Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning. Applied Computing and Geosciences, 14:100086, doi:10.1016/j.acags.2022.100086.
- Kenwright, B. (2012). A beginners guide to dual-quaternions: What they are, how they work, and how to use them for 3D character hierarchies. In 20th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2012, Plzen, Czech Republic, June 26–28, pages 1–10.
- Kheloufi, N. and Dehni, A. (2023). Some mathematical assumptions for accurate transformation parameters between WGS84 and Nord Sahara geodetic systems. Journal of Geodetic Science, 13(1):20220160, doi:10.1515/jogs-2022-0160.
- Mercan, H., Akyilmaz, O., and Aydin, C. (2018). Solution of the weighted symmetric similarity transformations based on quaternions. Journal of geodesy, 92(10):1113–1130, doi:10.1007/s00190-017-1104-0.
- Mihajlović, D. and Cvijetinović, Ž. (2017). Weighted coordinate transformation formulated by standard least-squares theory. Survey review, 49(356):328–345, doi:10.1080/00396265.2016.1173329.
- Okiemute, E. S., Oduyebo, O. F., and Olulade, S. A. (2018). Comparative analysis of three geodetic datum transformation software for application between WGS84 and Minna datums. International Journal of Engineering Science and Computing, 8(12):19410–19417.
- Poku-Gyamfi, Y. (2009). Establishment of GPS reference network in Ghana. PhD thesis, Universitat der Bundeswehr Munchen, Germany.
- Prasad, K. and Prasanna, H. (2022). Determination of 3D transformation parameters for the Sri Lankan Geodetic Reference Network using ordinary and total least squares. Journal of Geospatial Surveying, 2(2):11–21, doi:10.4038/jgs.v2i2.39.
- Ruffhead, A. (2021). Derivation of rigorously-conformal 7-parameter 3D geodetic datum transformations. Survey Review, 53(376):8–15, doi:10.1080/00396265.2019.1665614.
- Shen, Y. Z., Chen, Y., and Zheng, D. H. (2006). A quaternion-based geodetic datum transformation algorithm. Journal of Geodesy, 80:233–239, doi:10.1007/s00190-006-0054-8.
- Soler, T., Han, J.-Y., and Weston, N. D. (2016). Variance-covariance matrix of transformed GPS positions: Case study for the NAD 83 geodetic datum. Journal of Surveying Engineering, 142(1):04015004, doi:10.1061/(ASCE)SU.1943-5428.0000143.
- Uygur, S. Ö., Akyilmaz, O., and Aydin, C. (2021). Solution of nine-parameter affine transformation based on quaternions. Journal of Surveying Engineering, 147(3):04021011, doi:10.1061/(ASCE)SU.1943-5428.0000364.
- Uygur, S. Ö., Aydin, C., and Akyilmaz, O. (2022). Retrieval of Euler rotation angles from 3D similarity transformation based on quaternions. Journal of Spatial Science, 67(2):255–272, doi:10.1080/14498596.2020.1776170.
- Varga, M., Grgić, M., and Bašić, T. (2017). Empirical comparison of the Geodetic Coordinate Transformation Models: A case study of Croatia. Survey Review, 49(352):15–27, doi:10.1080/00396265.2015.1104092.
- Wang, Y., Wang, Y., Wu, K., Yang, H., and Zhang, H. (2014). A dual quaternion-based, closed-form pairwise registration algorithm for point clouds. ISPRS journal of photogrammetry and remote sensing, 94:63–69, doi:10.1016/j.isprsjprs.2014.04.013.
- Yakubu, I. and Kumi-Boateng, B. (2015). Ramification of datum and ellipsoidal parameters on post processed differential global positioning system (DGPS) data – A case study. Ghana Mining Journal, 15(1):1–9.
- Zeng, H., Chang, G., He, H., and Li, K. (2020). WTLS iterative algorithm of 3D similarity coordinate transformation based on Gibbs vectors. Earth, Planets and Space, 72:1–12, doi:10.1186/s40623-020-01179-1.
- Zeng, H., Chang, G., He, H., Tu, Y., Sun, S., and Wu, Y. (2019). Iterative solution of Helmert transformation based on a unit dual quaternion. Acta geodaetica et geophysica, 54:123–141, doi:10.1007/s40328-018-0241-0.
- Zeng, H., Fang, X., Chang, G., and Yang, R. (2018). A dual quaternion algorithm of the Helmert transformation problem. Earth, Planets and Space, 70:1–12, doi:10.1186/s40623-018-0792-x.
- Zeng, H., He, H., Chen, L., Chang, G., and He, H. (2022a). Extended WTLS iterative algorithm of 3D similarity transformation based on Gibbs vector. Acta Geodaetica et Geophysica, pages 1–19, doi:10.1007/s40328-021-00363-3.
- Zeng, H., Wang, J., Wang, Z., Li, S., He, H., Chang, G., and Yang, R. (2022b). Analytical dual quaternion algorithm of the weighted three-dimensional coordinate transformation. Earth, Planets and Space, 74(1):170, doi:10.1186/s40623-022-01731-1.
- Zeng, H., Wang, Z., Li, J., Li, S., Wang, J., and Li, X. (2024). Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation. Earth, Planets and Space, 76(1):20, doi:10.1186/s40623-024-01967-z.
- Zhao, Z., Li, Z., and Wang, B. (2024). A novel robust quaternions-based algorithm for 3-D symmetric similarity datum transformation. IEEE Transactions on Instrumentation and Measurement, 73(1003012):1–12, doi:10.1109/TIM.2024.3370773.
