Have a personal or library account? Click to login
Proposing a concept of least-squares-based outlier-exposing potential of Gauss-Markov models: Examples in geodesy Cover

Proposing a concept of least-squares-based outlier-exposing potential of Gauss-Markov models: Examples in geodesy

Open Access
|Dec 2024

References

  1. Baarda, W. (1968). A testing procedure for use in geodetic networks. Technical report. Netherlands Geodetic Commission. Publications on Geodesy, New Series, 2(5).
  2. Chatterjee, S. and Hadi, A. S. (2009). Sensitivity analysis in linear regression. John Wiley & Sons.
  3. Ding, X. and Coleman, R. (1996). Multiple outlier detection by evaluating redundancy contributions of observations. Journal of geodesy, 70:489–498, doi:10.1007/BF00863621.
  4. Durdag, U. M., Hekimoglu, S., and Erdogan, B. (2022). What is the relation between smearing e_ect of least squares estimation and its in_uence function? Survey Review, 54(385):320–331, doi:10.1080/00396265.2021.1939590.
  5. Förstner, W. (1983). Reliability and discernability of extended Gauss-Markov models. In Deut. Geodact. Komm. Seminar on Math. Models of Geodetic Photogrammetric Point Determination with Regard to Outliers and Systematic Errors, Munchen, Germany, number 98, pages 79–104.
  6. Huber, P. J. (1972). Robust statistics: A review. The Annals of Mathematical Statistics, 43(4):1041–1067, doi:10.1214/aoms/1177692459.
  7. Imparato, D., Teunissen, P., and Tiberius, C. (2018). Minimal detectable and identi_able biases for quality control. Survey review, 51(367):289–299, doi:10.1080/00396265.2018.1437947.
  8. Lehmann, R. (2013). On the formulation of the alternative hypothesis for geodetic outlier detection. Journal of geodesy, 87:373–386, doi:10.1007/s00190-012-0607-y.
  9. Lehmann, R., Lösler, M., and Neitzel, F. (2020). Mean shift versus variance in_ation approach for outlier detection – A comparative study. Mathematics, 8(6):991, doi:10.3390/math8060991.
  10. Maronna, R. A., Martin, R. D., and Yohai, V. J. (2006). Robust Statistics: theory and methods. John Wiley & Sons.
  11. Prószynski, W. (1994). Criteria for internal reliability of linear least squares models. Bulletin géodésique, 68:162–167, doi:10.1007/BF00808289.
  12. Prószynski, W. (2008). The vector space of imperceptible observation errors: a supplement to the theory of network reliability. Geodesy and Cartography, 57(1):3–19.
  13. Prószynski, W. (2012). Internal robustness of linear models to disturbances in data – uncorrelated and correlated observations (in Polish), volume Centre for Advanced Studies, Lecture Notes No.6. Warsaw University of Technology.
  14. Prószynski, W. (2015). Revisiting Baarda’s concept of minimal detectable bias with regard to outlier identi_ability. Journal of geodesy, 89:993–1003, doi:10.1007/s00190-015-0828-y.
  15. Rofatto, V. F., Matsuoka, M., Klein, I., Veronez, M., Bonimani, M., and Lehmann, R. (2020). A half-century of Baarda’s concept of reliability: a review, new perspectives, and applications. Survey review, 52(372):261–277, doi:10.1080/00396265.2018.1548118.
  16. Teunissen, P. (2006). Testing theory: an introduction, volume Series on Mathematical Geodesy and Positoning. VSSD.
  17. Teunissen, P. J. (2018). Distributional theory for the DIA method. Journal of geodesy, 92(1):59–80, doi:10.1007/s00190-017-1045-7.
  18. Teunissen, P. J., Imparato, D., and Tiberius, C. C. (2017). Does RAIM with correct exclusion produce unbiased positions? Sensors, 17(7):1508, doi:10.3390/s17071508.
DOI: https://doi.org/10.2478/rgg-2024-0019 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Submitted on: Jul 20, 2024
Accepted on: Nov 5, 2024
Published on: Dec 2, 2024
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Witold Prószynski, Zenon Parzynski, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.