References
- Cao, C. X., Le, C. V., Vo, D. N., Ta, H. T. T., Ngo, C. S., and Dang, T. T. (2022). UAV and TLS point cloud integration for the surface plant infrastructure of underground coal mines. Journal of Mining and Earth Sciences, 63(4):13–23, doi:10.46326/jmes.2022.63(4).02.
- Chudley, T. R., Christoffersen, P., Doyle, S. H., Abellan, A., and Snooke, N. (2019). High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. The Cryosphere, 13(3):955–968, doi:10.5194/tc-13-955-2019.
- Circular (2015). Circular No. 68/2015/TT-BTNMT regulates the techniques for direct topographic measurements used for the creation of topographic maps and geographic databases at scales of 1:500, 1:1000, 1:2000, and 1:5000. Ministry of Natural Resources and Environment of Vietnam.
- Circular (2018). Circular No. 24/2018/TT-BTNMT on the inspection, appraisal, and acceptance of the quality of surveying and mapping products. Ministry of Natural Resources and Environment of Vietnam.
- Circular (2021). Circular No. 07/2021/TT-BTNMT regulates the techniques for acquiring and processing digital geographic image data. Ministry of Natural Resources and Environment of Vietnam.
- Doi, N., Nghi, D., Tu, N., and Xuan, N. (2022). Study on the applicability of low-cost UAV devices in surveying and mapping: Testing some projects in Binh Dinh province (in Vietnamese). Journal of Hydro-Meteorology, EME4(1):202–214, doi:10.36335/vnjhm.2022(eme4).202-214.
- Dung, L. N., Trong, T. D., Chieu, V. D., Quynh, B. D., Hang, H. T., Hieu, D. C., and Huy, N. D. (2021). Studying of UAV flight mode for the line constructions topographic surveying – A case study on Xuan Quang dike road, Hanoi (in Vietnamese). Tap chi Khoa hoc Cong nghe Xay dung (KHCNXD) – DHXDHN, 15(7V):131–142, doi:10.31814/stce.huce(nuce)2021-15(7v)-12.
- Guisado-Pintado, E., Jackson, D. W., and Rogers, D. (2019). 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology, 328:157–172, doi:10.1016/j.geomorph.2018.12.013.
- Guo, Q., Su, Y., Hu, T., Zhao, X., Wu, F., Li, Y., Liu, J., Chen, L., Xu, G., Lin, G., Zheng, Y., Lin, Y., Mi, X., Fei, L., and Wang, X. (2017). An integrated UAV-borne LiDAR system for 3D habitat mapping in three forest ecosystems across China. International Journal of Remote Sensing, 38(8–10):2954–2972, doi:10.1080/01431161.2017.1285083.
- He, G. B. and Li, L. L. (2020). Research and application of LiDAR technology in cadastral surveying and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2020:33–37, doi:10.5194/isprs-archives-xliii-b1-2020-33-2020.
- Hlotov, V., Hunina, A., and Siejka, Z. (2017). Accuracy investigation of creating orthophotomaps based on images obtained by applying Trimble-UX5 UAV. Reports on Geodesy and Geoinformatics, 103(1):106–118, doi:10.1515/rgg-2017-0009.
- Le, H. T. T., Nguyen, T. V., Pham, L. T., Tong, S. S., Nguyen, L. H., and Vo, O. D. (2022). Combined use of terrestrial laser scanning and UAV photogrammetry in producing the LoD3 of 3D high building model. Journal of Mining and Earth Sciences, 63(4):24–34, doi:10.46326/jmes.2022.63(4).03.
- Lee, K. W. and Park, J. K. (2019). Comparison of UAV image and UAV LiDAR for construction of 3D geospatial information. Sensors and Materials, 31(10):3327, doi:10.18494/sam.2019.2466.
- Lin, Y.-C., Cheng, Y.-T., Zhou, T., Ravi, R., Hasheminasab, S., Flatt, J., Troy, C., and Habib, A. (2019). Evaluation of UAV LiDAR for mapping coastal environments. Remote Sensing, 11(24):2893, doi:10.3390/rs11242893.
- Mai, V., Bui, N., Pham, V., and Le, D. (2017). Research on the use of unmanned aerial vehicle (UAV) image data in the establishment of large-scale topographic maps (in Vietnamese). Journal of Mining and Earth Sciences, (33):49–57, doi:10.54491/jgac.2017.33.230.
- Nghia, N. V. (2020). Building DEM for deep open-pit coal mines using DJI Inspire 2. Journal of Mining and Earth Sciences, 61(1):1–10, doi:10.46326/jmes.2020.61(1).01.
- Nguyen, L. Q. (2021). Accuracy assessment of open - pit mine’s digital surface models generated using photos captured by Unmanned Aerial Vehicles in the post – processing kinematic mode. Journal of Mining and Earth Sciences, 62(4):38–47, doi:10.46326/jmes.2021.62(4).05.
- Nguyen, L. Q., Vo, D. N., and Vo, M. C. (2020). Advanced mining geomatic technologies serving open-pit mining operation in Vietnam. Journal of Mining and Earth Sciences, 61(5):125–133, doi:10.46326/jmes.ktlt2020.11.
- Salach, A., Bakuła, K., Pilarska, M., Ostrowski, W., Górski, K., and Kurczyński, Z. (2018). Accuracy assessment of point clouds from LiDAR and dense image matching acquired using the UAV platform for DTM creation. ISPRS International Journal of Geo-Information, 7(9):342, doi:10.3390/ijgi7090342.
- Thang, T. V. and Long, N. D. (2021). Application of the Unmanned Aerial Vehicle technology of Lidar Matrice 300 RTK combined with Phantom 4 RTK UAVs to build 3D maps of key waste dumps for the environmental protection and the disaster prevention of vinacomin. Journal of Mining Science and Technology Information, (3):41–48.
- Tien Bui, D., Long, N. Q., Bui, X.-N., Nguyen, V.-N., Van Pham, C., Van Le, C., Ngo, P.-T. T., Bui, D. T., and Kristoffersen, B. (2017). Lightweight Unmanned Aerial Vehicle and Structure-from-Motion photogrammetry for generating digital surface model for open-pit coal mine area and its accuracy assessment. In Advances and Applications in Geospatial Technology and Earth Resources, pages 17–33. Springer International Publishing, doi:10.1007/978-3-319-68240-2_2.
- Tran, A. T., Tran, H. H., and Quach, T. M. (2022). Combination of morphological and distributional filtering for UAV - LiDAR point cloud density to establish the Digital Terrain Model. Journal of Mining and Earth Sciences, 63(5):1–10, doi:10.46326/jmes.2022.63(5).01.
- Wang, H., Tan, X., Zhou, J., Lin, J., Tian, L., and Wang, F. (2023). Application of UAV remote sensing technology in 1:500 topographic map mapping. In Zuo, C., editor, International Conference on Remote Sensing, Surveying, and Mapping (RSSM 2023), page 12. SPIE, doi:10.1117/12.2682593.
