Have a personal or library account? Click to login
Some properties of the basins of attraction of the Newton’s method for simple nonlinear geodetic systems Cover

Some properties of the basins of attraction of the Newton’s method for simple nonlinear geodetic systems

Open Access
|Jul 2024

References

  1. Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (On operations in abstract sets and their application to integral equations). Fundamenta Mathematicae, 3(1):133–181.
  2. Barnsley, M. F. (2000). Fractals everywhere. Morgan Kaufmann Publishers, 2 edition.
  3. Dennis, J. E. J. and Schnabel, R. B. (1996). Numerical Methods for Unconstrained Optimization and Nonlinear Equations, volume 16 of Classics In Applied Mathematics. SIAM, Philadelphia, 2 edition.
  4. Ghilani, C. D. (2017). Adjustment computations: Spatial data analysis. Wiley, 6 edition.
  5. Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer, New York.
  6. Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations. SIAM, Philadelphia.
  7. Kincaid, D. and Cheney, W. (2002). Numerical Analysis: Mathematics of Scientific Computing. University of Texas, Austin, 3 edition.
  8. Kroszczynski, K. and Winnicki, I. (2002). The properties of strange attractor reconstructed from the time series of tropospheric mean temperature. In Proceedings of the 18th International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology (IIPS), pages 199–200, Orlando, FL. American Meteorological Society.
  9. Lothar, G. (1993). Developments with respect to the automated processing and analysis of engineering survey data. In Proceedings of the Applications of Geodesy to Engineering, pages 175–184.
  10. Nielsen, A. A. (2013). Least squares adjustment: Linear and nonlinear weighted regression analysis.
  11. Nusse, H. E. and Yorke, J. A. (1998). Dynamics: Numerical Explorations. Applied Mathematical Sciences. Springer, New York.
  12. Ortega, J. M. (1972). Numerical Analysis. A Second Course. Computer Science and Applied Mathematics: Monographs and Textbooks. Academic Press, New York.
  13. Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York.
  14. Ostrowski, A. M. (1966). Solutions of Equations and Systems of Equations, volume 9 of Pure and Applied Mathematics: Monographs and Textbooks. Academic Press, New York, 2 edition.
  15. Qureshi, S., Chicharro, F. I., Argyros, I. K., Soomro, A., Alahmadi, J., and Hincal, E. (2024). A new optimal numerical root-solver for solving systems of nonlinear equations using local, semi-local, and stability analysis. Axioms, 13(6), doi:10.3390/axioms13060341.
  16. Siki, Z. (2018). Geoeasy an open source project for surveying calculations. Geoinformatics FCE CTU, 17(2):1–8, doi:10.14311/gi.17.2.1.
  17. Traub, J. F. (1982). Iterative Methods for the Solution of Equations. American Mathematical Society, New York, 2 edition.
  18. Uren, J. and Price, B. (1985). Intersection and resection. Surveying for Engineers, 108:188–196.
  19. Čepek, A. (2002). The GNU GaMa Project – Adjustment of geodetic networks. Acta Polytechnica, 42(3):26–30, doi:10.14311/350.
DOI: https://doi.org/10.2478/rgg-2024-0012 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Submitted on: Feb 11, 2024
Accepted on: Jun 10, 2024
Published on: Jul 17, 2024
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Ireneusz Winnicki, Krzysztof Kroszczynski, Damian Kiliszek, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.