Have a personal or library account? Click to login
Vehicle detection and masking in UAV images using YOLO to improve photogrammetric products Cover

Vehicle detection and masking in UAV images using YOLO to improve photogrammetric products

Open Access
|Dec 2022

References

  1. Andriyanov, N., Khasanshin, I., Utkin, D., Gataullin, T., Ignar, S., Shumaev, V., and Soloviev, V. (2022). Intelligent system for estimation of the spatial position of apples based on YOLOv3 and real sense depth camera d415. Symmetry, 14(1):148, doi:10.3390/sym14010148.10.3390/sym14010148
  2. Bao, W., Ren, Y., Wang, N., Hu, G., and Yang, X. (2021). Detection of abnormal vibration dampers on transmission lines in UAV remote sensing images with PMA-YOLO. Remote Sensing, 13(20):4134, doi:10.3390/rs13204134.10.3390/rs13204134
  3. Bianco, S., Ciocca, G., and Marelli, D. (2018). Evaluating the performance of structure from motion pipelines. Journal of Imaging, 4(8):98, doi:10.3390/jimaging4080098.10.3390/jimaging4080098
  4. Campana, S. (2017). Drones in archaeology. State-of-the-art and future perspectives. International Journal of Archaeological Prospection, 24(4):275—-296, doi:10.1002/arp.1569.10.1002/arp.1569
  5. Cardenal, J., Fernández, T., Pérez-García, J. L., and Gómez-López, J. M. (2019). Measurement of road surface deformation using images captured from UAVs. Remote Sensing, 11(12):1507, doi:10.3390/rs11121507.10.3390/rs11121507
  6. Carrera-Hernández, J., Levresse, G., and Lacan, P. (2020). Is UAV-SfM surveying ready to replace traditional surveying techniques? International journal of remote sensing, 41(12):4820–4837, doi:10.1080/01431161.2020.1727049.10.1080/01431161.2020.1727049
  7. Coombs, C., Hislop, D., Taneva, S. K., and Barnard, S. (2020). The strategic impacts of intelligent automation for knowledge and service work: An interdisciplinary review. The Journal of Strategic Information Systems, 29(4):101600, doi:10.1016/j.jsis.2020.101600.10.1016/j.jsis.2020.101600
  8. Dainelli, R., Toscano, P., Di Gennaro, S. F., and Matese, A. (2021). Recent advances in unmanned aerial vehicles forest remote sensing — a systematic review. part i: A general framework. Forests, 12(3):327, doi:10.3390/f12030327.10.3390/f12030327
  9. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., and Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6):1204, doi:10.3390/rs13061204.10.3390/rs13061204
  10. Eltner, A. and Sofia, G. (2020). Structure from motion photogram-metric technique. In Developments in Earth surface processes, volume 23, pages 1–24. Elsevier, doi:10.1016/B978-0-444-64177-9.00001-1.10.1016/B978-0-444-64177-9.00001-1
  11. Fiz, J. I., Martín, P. M., Cuesta, R., Subías, E., Codina, D., and Cartes, A. (2022). Examples and results of aerial photogrammetry in archeology with UAV: Geometric documentation, high resolution multispectral analysis, models and 3D printing. Drones, 6(3):59, doi:10.3390/drones6030059.10.3390/drones6030059
  12. Ge, L., Li, X., and Ng, A. H.-M. (2016). UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 5422–5425. IEEE, doi:10.1109/IGARSS.2016.7730412.10.1109/IGARSS.2016.7730412
  13. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, pages 580–587. doi:10.1109/CVPR.2014.81.10.1109/CVPR.2014.81
  14. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2015). Fast R-CNN. In the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015, pages 7–13. doi:10.1109/ICCV.2015.169.10.1109/ICCV.2015.169
  15. Gromada, K., Siemiątkowska, B., Stecz, W., Płochocki, K., and Woźniak, K. (2022). Real-time object detection and classification by UAV equipped with SAR. Sensors, 22(5):2068, doi:10.3390/s22052068.10.3390/s22052068891509935271213
  16. Gruen, A. (2021). Everything moves: The rapid changes in photogrammetry and remote sensing. Geo-spatial Information Science, 24(1):33–49, doi:10.1080/10095020.2020.1868275.10.1080/10095020.2020.1868275
  17. Han, X., Chang, J., and Wang, K. (2021). Real-time object detection based on YOLO-v2 for tiny vehicle object. Procedia Computer Science, 183:61–72, doi:10.1016/j.procs.2021.02.031.10.1016/j.procs.2021.02.031
  18. Horzyk, A. and Ergün, E. (2020). YOLOv3 precision improvement by the weighted centers of confidence selection. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, doi:10.1109/IJCNN48605.2020.9206848.10.1109/IJCNN48605.2020.9206848
  19. Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., and Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5(3):155–168, doi:10.1007/s40725-019-00094-3.10.1007/s40725-019-00094-3
  20. Indolia, S., Goswami, A. K., Mishra, S. P., and Asopa, P. (2018). Conceptual understanding of convolutional neural network-a deep learning approach. Procedia computer science, 132:679–688, doi:10.1016/j.procs.2018.05.069.10.1016/j.procs.2018.05.069
  21. Jiang, S., Jiang, C., and Jiang, W. (2020). Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS Journal of Photogrammetry and Remote Sensing, 167:230–251, doi:10.1016/j.isprsjprs.2020.04.016.10.1016/j.isprsjprs.2020.04.016
  22. Ju, M., Luo, H., Wang, Z., Hui, B., and Chang, Z. (2019). The application of improved YOLO v3 in multi-scale target detection. Applied Sciences, 9(18):3775, doi:10.3390/app9183775.10.3390/app9183775
  23. Jurgiel, B. and Verchere, P. (2022). Profile Tool GitHub repository. Available online: https://github.com/etiennesky/profiletool, Last accessed April 2022.
  24. Kaivosoja, J., Hautsalo, J., Heikkinen, J., Hiltunen, L., Ruuttunen, P., Näsi, R., Niemeläinen, O., Lemsalu, M., Honkavaara, E., and Salonen, J. (2021). Reference measurements in developing UAV systems for detecting pests, weeds, and diseases. Remote Sensing, 13(7):1238, doi:10.3390/rs13071238.10.3390/rs13071238
  25. Koay, H. V., Chuah, J. H., Chow, C.-O., Chang, Y.-L., and Yong, K. K. (2021). YOLO-RTUAV: Towards real-time vehicle detection through aerial images with low-cost edge devices. Remote Sensing, 13(21):4196, doi:10.3390/rs13214196.10.3390/rs13214196
  26. Koeva, M., Muneza, M., Gevaert, C., Gerke, M., and Nex, F. (2018). Using UAVs for map creation and updating. a case study in Rwanda. Survey Review, 50(361):312–325, doi:10.1080/00396265.2016.1268756.10.1080/00396265.2016.1268756
  27. Li, C.-Y. and Lin, H.-Y. (2020). Vehicle detection and classification in aerial images using convolutional neural networks. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Valletta, Malta, volume 5, pages 775–782. doi:10.5220/0008941707750782.10.5220/0008941707750782
  28. Li, Y. and Liu, C. (2019). Applications of multirotor drone technologies in construction management. International Journal of Construction Management, 19(5):401–412, doi:10.1080/15623599.2018.1452101.10.1080/15623599.2018.1452101
  29. Luo, X., Tian, X., Zhang, H., Hou, W., Leng, G., Xu, W., Jia, H., He, X., Wang, M., and Zhang, J. (2020). Fast automatic vehicle detection in UAV images using convolutional neural networks. Remote Sensing, 12(12):1994, doi:10.3390/rs12121994.10.3390/rs12121994
  30. Nyimbili, P. H., Demirel, H., Seker, D., and Erden, T. (2016). Structure from motion (SfM) – approaches and applications. In Proceedings of the international scientific conference on applied sciences, Antalya, Turkey, pages 27–30.
  31. Park, S. and Choi, Y. (2020). Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals, 10(8):663, doi:10.3390/min10080663.10.3390/min10080663
  32. Pessacg, F., Gómez-Fernández, F., Nitsche, M., Chamo, N., Torrella, S., Ginzburg, R., and De Cristóforis, P. (2022). Simplifying UAV-based photogrammetry in forestry: How to generate accurate digital terrain model and assess flight mission settings. Forests, 13(2):173, doi:10.3390/f13020173.10.3390/f13020173
  33. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016, pages 779–788. doi:10.48550/arXiv.1506.02640.10.1109/CVPR.2016.91
  34. Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, doi:10.48550/arXiv.1804.02767.
  35. Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, doi:10.1109/TPAMI.2016.2577031.10.1109/TPAMI.2016.257703127295650
  36. Roberts, R., Inzerillo, L., and Di Mino, G. (2020). Using UAV based 3D modelling to provide smart monitoring of road pavement conditions. Information, 11(12):568, doi:10.3390/info11120568.10.3390/info11120568
  37. Sahin, O. and Ozer, S. (2021). Yolodrone: Improved yolo architecture for object detection in drone images. In 2021 44th International Conference on Telecommunications and Signal Processing (TSP), pages 361–365. IEEE, doi: 10.1109/TSP52935.2021.9522653.10.1109/TSP52935.2021.9522653
  38. Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):591–611, doi:10.2307/2333709.10.2307/2333709
  39. Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet photo collections. International journal of computer vision, 80(2):189–210, doi:10.1007/s11263-007-0107-3.10.1007/s11263-007-0107-3
  40. Tan, L., Lv, X., Lian, X., and Wang, G. (2021). YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm. Computers & Electrical Engineering, 93:107261, doi:10.1016/j.compeleceng.2021.107261.10.1016/j.compeleceng.2021.107261
  41. Tan, Y. and Li, Y. (2019). UAV photogrammetry-based 3D road distress detection. ISPRS International Journal of Geo-Information, 8(9):409, doi:10.3390/ijgi8090409.10.3390/ijgi8090409
  42. Wang, J., Su, S., Wang, W., Chu, C., Jiang, L., and Ji, Y. (2022). An object detection model for paint surface detection based on improved yolov3. Machines, 10(4):261, doi:10.3390/machines10040261.10.3390/machines10040261
  43. Xiao, Y., Tian, Z., Yu, J., Zhang, Y., Liu, S., Du, S., and Lan, X. (2020). A review of object detection based on deep learning. Multimedia Tools and Applications, 79(33):23729–23791, doi:10.1007/s11042-020-08976-6.10.1007/s11042-020-08976-6
  44. Xu, Z.-F., Jia, R.-S., Sun, H.-M., Liu, Q.-M., and Cui, Z. (2020). Light-YOLOv3: fast method for detecting green mangoes in complex scenes using picking robots. Applied Intelligence, 50(12):4670–4687, doi:10.1007/s10489-020-01818-w.10.1007/s10489-020-01818-w
  45. Yahya, M. Y., Shun, W. P., Yassin, A. M., and Omar, R. (2021). The challenges of drone application in the construction industry. Journal of Technology Management and Business, 8(1):20–27, doi:10.30880/jtmb.2021.08.01.003.10.30880/jtmb.2021.08.01.003
  46. Yang, C., Zhang, F., Gao, Y., Mao, Z., Li, L., and Huang, X. (2021). Moving car recognition and removal for 3D urban modelling using oblique images. Remote Sensing, 13(17):3458, doi:10.3390/rs13173458.10.3390/rs13173458
  47. Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11):3212–3232, doi:10.1109/TNNLS.2018.2876865.10.1109/TNNLS.2018.287686530703038
  48. Zhu, Q., Shang, Q., Hu, H., Yu, H., and Zhong, R. (2021). Structure-aware completion of photogrammetric meshes in urban road environment. ISPRS Journal of Photogrammetry and Remote Sensing, 175:56–70, doi:10.1016/j.isprsjprs.2021.02.010.10.1016/j.isprsjprs.2021.02.010
  49. Zulkipli, M. A. and Tahar, K. N. (2018). Multirotor UAV-based photogrammetric mapping for road design. International Journal of Optics, 2018:7, doi:10.1155/2018/1871058.10.1155/2018/1871058
  50. Šafář, V., Potůčková, M., Karas, J., Tlustý, J., Štefanová, E., Jančovič, M., and Cígler Žofková, D. (2021). The use of UAV in cadastral mapping of the Czech Republic. ISPRS International Journal of Geo-Information, 10(6):380, doi:10.3390/ijgi10060380.10.3390/ijgi10060380
DOI: https://doi.org/10.2478/rgg-2022-0006 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 15 - 23
Submitted on: Jul 8, 2022
Accepted on: Dec 1, 2022
Published on: Dec 24, 2022
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Karolina Pargieła, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.