Have a personal or library account? Click to login
Applicability analysis of attention U-Nets over vanilla variants for automated ship detection Cover

Applicability analysis of attention U-Nets over vanilla variants for automated ship detection

Open Access
|Oct 2022

References

  1. Bianchi, F. M., Espeseth, M. M., and Borch, N. (2020). Large-scale detection and categorization of oil spills from SAR images with deep learning.10.3390/rs12142260
  2. Coman, C. and Thaens, R. (2018). A deep learning SAR target classification experiment on MSTAR dataset. In 2018 19th International Radar Symposium (IRS). IEEE, doi:10.23919/irs.2018.8448048.10.23919/IRS.2018.8448048
  3. Ding, Y., Chen, F., Zhao, Y., Wu, Z., Zhang, C., and Wu, D. (2019). A stacked multi-connection simple reducing net for brain tumor segmentation. IEEE Access, 7:104011–104024, doi:10.1109/access.2019.2926448.10.1109/ACCESS.2019.2926448
  4. Gajjar, P., Shah, P., Vegada, A., and Savalia, J. (2022). Triplet loss for chromosome classification. Journal of Innovative Image Processing, 4(1):1–15, doi:10.36548/jiip.2022.1.001.10.36548/jiip.2022.1.001
  5. He, Y. and Wang, S. (2022). SE-BLTCNN: A channel attention adapted deep learning model based on PSSM for membrane protein classification. Computational biology and chemistry, 98:107680, 35421797, doi:10.1016/j.compbiolchem.2022.107680.10.1016/j.compbiolchem.2022.10768035421797
  6. Holloway, J. and Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sensing, 10(9):1365, doi:10.3390/rs10091365.10.3390/rs10091365
  7. Huang, G., Wang, Y., Zhang, Y., and Tian, Y. (2011). Ship detection using texture statistics from optical satellite images. In 2011 International Conference on Digital Image Computing: Techniques and Applications. IEEE, doi:10.1109/dicta.2011.91.10.1109/DICTA.2011.91
  8. Karki, S. and Kulkarni, S. (2021). Ship detection and segmentation using Unet. In 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE, doi:10.1109/icaect49130.2021.9392463.10.1109/ICAECT49130.2021.9392463
  9. Khan, H. M. and Yunze, C. (2018). Ship detection in SAR image using yolov2. In 2018 37th Chinese Control Conference (CCC). IEEE, doi:10.23919/chicc.2018.8482863.10.23919/ChiCC.2018.8482863
  10. Khan, R. A., Luo, Y., and Wu, F.-X. (2022). RMS-UNet: Residual multi-scale UNet for liver and lesion segmentation. Artificial Intelligence in Medicine, 124:102231, doi:10.1016/j.artmed.2021.102231.10.1016/j.artmed.2021.10223135115126
  11. Li, J., Qu, C., and Shao, J. (2017a). Ship detection in SAR images based on an improved faster R-CNN. In 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). IEEE, doi:10.1109/bigsardata.2017.8124934.10.1109/BIGSARDATA.2017.8124934
  12. Li, W., Fu, K., Sun, H., Sun, X., Guo, Z., Yan, M., and Zheng, X. (2017b). Integrated localization and recognition for inshore ships in large scene remote sensing images. IEEE Geoscience and Remote Sensing Letters, 14(6):936–940, doi:10.1109/lgrs.2017.2688357.10.1109/LGRS.2017.2688357
  13. Mehta, N., Shah, P., and Gajjar, P. (2021). Oil spill detection over ocean surface using deep learning: a comparative study. Marine Systems & Ocean Technology, 16(3-4):213–220, doi:10.1007/s40868-021-00109-4.10.1007/s40868-021-00109-4
  14. Mehta, N., Shah, P., Gajjar, P., and Ukani, V. (2022). Ocean surface pollution detection: Applicability analysis of V-Net with data augmentation for oil spill and other related ocean surface feature monitoring. In Communication and Intelligent Systems, pages 11–25. Springer.10.1007/978-981-19-2130-8_2
  15. Morillas, J. R. A., Garcia, I. C., and Zolzer, U. (2015). Ship detection based on SVM using color and texture features. In 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, doi:10.1109/iccp.2015.7312682.10.1109/ICCP.2015.7312682
  16. Niu, J.-Y., Xie, Z.-H., Li, Y., Cheng, S.-J., and Fan, J.-W. (2021). Scale fusion light CNN for hyperspectral face recognition with knowledge distillation and attention mechanism. Applied Intelligence, 52(6):6181–6195, doi:10.1007/s10489-021-02721-8.10.1007/s10489-021-02721-8
  17. Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Lecture Notes in Computer Science, pages 234–241. Springer International Publishing, doi:10.1007/978-3-319-24574-4_28.10.1007/978-3-319-24574-4_28
  18. Shamsolmoali, P., Chanussot, J., Zareapoor, M., Zhou, H., and Yang, J. (2021). Multipatch feature pyramid network for weakly supervised object detection in optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60:1–13.10.1109/TGRS.2021.3106442
  19. Shan, W., Wang, Y., and Lu, W. (2021). ECA-UNet: Denoise seismic data by learning from traditional method. In First International Meeting for Applied Geoscience & Energy Expanded Abstracts. Society of Exploration Geophysicists, doi:10.1190/segam2021-3583394.1.10.1190/segam2021-3583394.1
  20. Trappenberg, T. P. (2019). Machine learning with sklearn. In Fundamentals of Machine Learning, pages 38–65. Oxford University Press, doi:10.1093/oso/9780198828044.003.0003.10.1093/oso/9780198828044.003.0003
  21. Trebing, K., Stanczyk, T., and Mehrkanoon, S. (2021). SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recognition Letters, 145:178–186, doi:10.1016/j.patrec.2021.01.036.10.1016/j.patrec.2021.01.036
  22. Wang, J., Yu, Z., Luan, Z., Ren, J., Zhao, Y., and Yu, G. (2022). RDAUNet: Based on a residual convolutional neural network with DFP and CBAM for brain tumor segmentation. Frontiers in Oncology, 12, doi:10.3389/fonc.2022.805263.10.3389/fonc.2022.805263892461135311076
  23. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. (2020). ECA-Net: Efficient channel attention for deep convolutional neural networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, doi:10.1109/cvpr42600.2020.01155.10.1109/CVPR42600.2020.01155
  24. Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). CBAM: convolutional block attention module. In Computer Vision – ECCV 2018, pages 3–19. Springer International Publishing, doi:10.1007/978-3-030-01234-2_1.10.1007/978-3-030-01234-2_1
  25. Yang, F., Xu, Q., Gao, F., and Hu, L. (2015). Ship detection from optical satellite images based on visual search mechanism. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, doi:10.1109/igarss.2015.7326621.10.1109/IGARSS.2015.7326621
  26. Yu, G. and Sapiro, G. (2011). DCT image denoising: a simple and effective image denoising algorithm. Image Processing On Line, 1:292–296, doi:10.5201/ipol.2011.ys-dct.10.5201/ipol.2011.ys-dct
  27. Zareapoor, M., Chanussot, J., Zhou, H., Yang, J., et al. (2021). Rotation equivariant feature image pyramid network for object detection in optical remote sensing imagery.
  28. Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2016). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. doi:10.1109/TIP.2017.2662206.10.1109/TIP.2017.266220628166495
  29. Zhang, Z., Liu, Q., and Wang, Y. (2018). Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, doi:10.1109/lgrs.2018.2802944.10.1109/LGRS.2018.2802944
  30. Zhao, Z., Chen, K., and Yamane, S. (2021). CBAM-Unet++:easier to find the target with the attention module “CBAM”. In 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). IEEE, doi:10.1109/gcce53005.2021.9622008.10.1109/GCCE53005.2021.9622008
  31. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2020). UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 39(6):1856–1867, doi:10.1109/tmi.2019.2959609.10.1109/TMI.2019.2959609735729931841402
  32. Zhu, C., Zhou, H., Wang, R., and Guo, J. (2010). A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Transactions on Geoscience and Remote Sensing, 48(9):3446–3456, doi:10.1109/tgrs.2010.2046330.10.1109/TGRS.2010.2046330
DOI: https://doi.org/10.2478/rgg-2022-0005 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 9 - 14
Submitted on: May 22, 2022
Accepted on: Sep 28, 2022
Published on: Oct 28, 2022
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Pranshav Gajjar, Manav Garg, Vatsal Shah, Pooja Shah, Anup Das, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.