Have a personal or library account? Click to login
A crossvalidation-based comparison of kriging and IDW in local GNSS/levelling quasigeoid modelling Cover

A crossvalidation-based comparison of kriging and IDW in local GNSS/levelling quasigeoid modelling

Open Access
|Oct 2022

References

  1. Akyilmaz, O., Özlüdemir, M., Ayan, T., and Çelik, R. (2009). Soft computing methods for geoidal height transformation. Earth, planets and space, 61(7):825–833, doi:10.1186/BF03353193.10.1186/BF03353193
  2. Babak, O. and Deutsch, C. V. (2009). Statistical approach to inverse distance interpolation. Stochastic Environmental Research and Risk Assessment, 23(5):543–553.10.1007/s00477-008-0226-6
  3. Banasik, P., Bujakowski, K., Kudrys, J., and Ligas, M. (2020). Development of a precise local quasigeoid model for the city of Krakow – QuasigeoidKR2019. Reports on Geodesy and Geoinformatics, 109(1):25–31, doi:10.2478/rgg-2020-0004.10.2478/rgg-2020-0004
  4. Borowski, Ł. and Banaś, M. (2019). The best robust estimation method to determine local surface. Baltic Journal of Modern Computing, 7(4):525–540, doi:10.22364/bjmc.2019.7.4.06.10.22364/bjmc.2019.7.4.06
  5. Borowski, Ł. and Banasik, P. (2020). The conversion of heights of the benchmarks of the detailed vertical reference network into the PL-EVRF2007-NH frame. Reports on geodesy and geoinformatics, 109(1):1–7, doi:10.2478/rgg-2020-0001.10.2478/rgg-2020-0001
  6. Chiles, J.-P. and Delfiner, P. (1999). Geostatistics: modeling spatial uncertainty. John Wiley & Sons.10.1002/9780470316993
  7. Cressie, N. (1993). Statistics for spatial data. John Wiley & Sons.10.1002/9781119115151
  8. Dawod, G. M. and Abdel-Aziz, T. M. (2020). Utilization of geographically weighted regression for geoid modelling in Egypt. Journal of Applied Geodesy, 14(1):1–12, doi:10.1515/jag-2019-0009.10.1515/jag-2019-0009
  9. Elshambaky, H. T. (2018). Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt. Journal of Applied Geodesy, 12(1):29–43, doi:10.1515/jag-2017-0017.10.1515/jag-2017-0017
  10. Gucek, M. and Bašić, T. (2009). Height transformation models from ellipsoidal into the normal orthometric height system for the territory of the city of Zagreb. Studia Geophysica et Geodaetica, 53(1):17–38, doi:10.1007/s11200-009-0002-1.10.1007/s11200-009-0002-1
  11. Hofmann-Wellenhof, B. and Moritz, H. (2006). Physical geodesy. Springer Science & Business Media.
  12. Jordan, S. K. (1972). Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid. Journal of Geophysical Research, 77(20):3660–3670, doi:10.1029/JB077i020p03660.10.1029/JB077i020p03660
  13. Kaloop, M. R., Pijush, S., Rabah, M., Al-Ajami, H., Hu, J. W., and Zaki, A. (2021). Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height. Survey Review, pages 1–14, doi:10.1080/00396265.2021.1970918.10.1080/00396265.2021.1970918
  14. Kim, S.-K., Park, J., Gillins, D., and Dennis, M. (2018). On determining orthometric heights from a corrector surface model based on leveling observations, GNSS, and a geoid model. Journal of Applied Geodesy, 12(4):323–333, doi:10.1515/jag-2018-0014.10.1515/jag-2018-0014
  15. Ligas, M. (2022). Comparison of kriging and least-squares collocation–revisited. Journal of Applied Geodesy, 16(3):217–227, doi:10.1515/jag-2021-0032.10.1515/jag-2021-0032
  16. Ligas, M. and Szombara, S. (2018). Geostatistical prediction of a local geometric geoid-kriging and cokriging with the use of EGM2008 geopotential model. Studia Geophysica et Geodaetica, 62(2):187–205, doi:10.1007/s11200-017-0713-7.10.1007/s11200-017-0713-7
  17. Meier, S. (1981). Planar geodetic covariance functions. Reviews of geophysics, 19(4):673–686, doi:10.1029/RG019i004p00673.10.1029/RG019i004p00673
  18. Moritz, H. (1972). Advanced least-squares methods, volume 175. Ohio State University Research Foundation Columbus, OH, USA.
  19. Orejuela, I. P., González, C. L., Guerra, X. B., Mora, E. C., and Toulkeridis, T. (2021). Geoid undulation modeling through the Cokriging method–A case study of Guayaquil, Ecuador. Geodesy and Geodynamics, 12(5):356–367, doi:10.1016/j.geog.2021.04.004.10.1016/j.geog.2021.04.004
  20. Radanović, M. and Bašić, T. (2018). Accuracy assessment and comparison of interpolation methods on geoid models. Geodetski Vestnik, 62(1):68–78, doi:10.15292/geodetskivestnik.2018.01.68-78.10.15292/geodetski-vestnik.2018.01.68-78
  21. Schaffrin, B. (2001). Equivalent systems for various forms of kriging, including least-squares collocation. Zeitschrift für Vermessungswesen, 126(2):87–93.
  22. Tusat, E. and Mikailsoy, F. (2018). An investigation of the criteria used to select the polynomial models employed in local GNSS/leveling geoid determination studies. Arabian journal of geosciences, 11(24):1–15, doi:10.1007/s12517-018-4176-0.10.1007/s12517-018-4176-0
  23. Wackernagel, H. (2003). Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, doi:10.1007/978-3-662-05294-5.10.1007/978-3-662-05294-5
  24. You, R.-J. (2006). Local geoid improvement using GPS and leveling data: case study. Journal of Surveying Engineering, 132(3):101–107, doi:10.1061/(ASCE)0733-9453(2006)132:3(101).10.1061/(ASCE)0733-9453(2006)132:3(101)
  25. Zhong, D. (1997). Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. Journal of Geodesy, 71(9):552–561, doi:10.1007/s001900050123.10.1007/s001900050123
DOI: https://doi.org/10.2478/rgg-2022-0004 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 1 - 7
Submitted on: Aug 6, 2022
Accepted on: Sep 21, 2022
Published on: Oct 28, 2022
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Marcin Ligas, Blazej Lucki, Piotr Banasik, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.