Have a personal or library account? Click to login
Evaluating Repeatability of RTK (GPS and Galileo/GPS) performance in the analysis of points located in areas with and without obstructions Cover

Evaluating Repeatability of RTK (GPS and Galileo/GPS) performance in the analysis of points located in areas with and without obstructions

By: Atınç Pırtı and  M. Ali Yucel  
Open Access
|Jun 2022

References

  1. Andreas, H., Abidin, H. Z., Sarsito, D. A., and Pradipta, D. (2019). Study the capabilities of RTK Multi GNSS under forest canopy in regions of Indonesia. In E3S Web of Conferences, volume 94, page 01021. EDP Sciences.10.1051/e3sconf/20199401021
  2. Angrisano, A., Gaglione, S., Gioia, C., Borio, D., and Fortuny-Guasch, J. (2013). Testing the test satellites: the Galileo IOV measurement accuracy. In 2013 International Conference on Localization and GNSS (ICL-GNSS), 25-27 June 2013, Turin, Italy, pages 1–6. IEEE, doi:10.1109/ICL-GNSS.2013.6577253.10.1109/ICL-GNSS.2013.6577253
  3. Borio, D., Senni, T., and Fernández-Hernández, I. (2020). Galileo’s High Accuracy Service—Field experimentation of data dissemination schemes. Inside GNSS, 15(4).
  4. Cai, C., He, C., Santerre, R., Pan, L., Cui, X., and Zhu, J. (2016). A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, 48(349):287–295, doi:10.1179/1752270615Y.0000000032.10.1179/1752270615Y.0000000032
  5. Cai, C., Luo, X., Liu, Z., and Xiao, Q. (2014). Galileo signal and positioning performance analysis based on four IOV satellites. The Journal of Navigation, 67(5):810–824, doi:10.1017/S037346331400023X.10.1017/S037346331400023X
  6. Carlin, L., Hauschild, A., and Montenbruck, O. (2021). Precise point positioning with GPS and Galileo broadcast ephemerides. GPS Solutions, 25(77):1–13, doi:10.1007/s10291-021-01111-4.10.1007/s10291-021-01111-4
  7. Deckert, C. and Bolstad, P. V. (1996). Forest canopy, terrain, and distance effects on Global Positioning System point accuracy. Photogrammetric Engineering and Remote Sensing, 62(3):317–321.
  8. Diessongo, T. H., Schüler, T., and Junker, S. (2014). Precise position determination using a Galileo E5 single-frequency receiver. GPS solutions, 18(1):73–83, doi:10.1007/s10291-013-0311-2.10.1007/s10291-013-0311-2
  9. Elmezayen, A. and El-Rabbany, A. (2019). Precise point positioning using world’s first dual-frequency GPS/GALILEO smartphone. Sensors, 19(11):2593, doi:10.3390/s19112593.10.3390/s19112593660367231174413
  10. ESA (2017). Galileo fact sheet, European Space Agency. https://esamultimedia.esa.int/docs/galileo/GalileoFactsheet2017.pdf. Last accessed April 2022.
  11. ESA (2020). Galileo Services – Open Service Performance Report. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-Quarterly-Performance_Report-Q4-2020.pdf.
  12. ESA (2021). European GNSS (Galileo) Open Service. https://galileognss.eu/wp-content/uploads/2015/12/Galileo_OS_SIS_ICD_v1.2.pdf. Last accessed April 2022.
  13. Feng, Y. and Moody, M. (2006). Improved phase ambiguity resolution using three GNSS signals. PCT/AU2006/000492, Publication Number WO/2006/108227.
  14. Feng, Y. and Rizos, C. (2005). Three carrier approaches for future global, regional and local GNSS positioning services: concepts and performance perspectives. In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005),Long Beach, CA, September 2005, pages 2277–2287.
  15. Gaglione, S., Angrisano, A., Castaldo, G., Freda, P., Gioia, C., Innac, A., Troisi, S., and Del Core, G. (2015). The first Galileo FOC satellites: from useless to essential. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 11 April 2019, Milan, Italy, pages 3667–3670. IEEE, doi:10.1109/IGARSS.2015.7326618.10.1109/IGARSS.2015.7326618
  16. Hatch, R. R. (2006). A new three-frequency, geometry-free technique for ambiguity resolution. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 26 - 29, 2006, Fort Worth, TX, pages 309–316.
  17. Hossam-E-Haider, M., Tabassum, A., Shihab, R. H., and Hasan, C. M. (2014). Comparative analysis of GNSS reliability: GPS, GALILEO and combined GPS-GALILEO. In 2013 International Conference on Electrical Information and Communication Technology (EICT), pages 1–6. IEEE.10.1109/EICT.2014.6777835
  18. Kaartinen, H., Hyyppa, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyorala, J., Liang, X., Liu, J., Wang, Y., et al. (2015). Accuracy of kinematic positioning using Global Satellite Navigation Systems under forest canopies. Forests.10.3390/f6093218
  19. Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., and Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6):607–635, doi:10.1007/s00190-015-0802-8.10.1007/s00190-015-0802-8
  20. Lu, H. and Lian, B. (2016). New generation GNSS signal processing and evaluation technology. National Defense Industry Press, Beijing.
  21. Luo, X., Chen, J., and Richter, B. (2017). How Galileo benefits high-precision RTK. GPS World, pages 22–28.
  22. Meyer, T. H., Bean, J. E., Ferguson, C. R., and Naismith, J. M. (2002). The effect of broadleaf canopies on survey-grade horizontal gps/glonass measurements.
  23. Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., and Schaer, S. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges. Advances in space research, 59(7):1671–1697, doi:10.1016/j.asr.2017.01.011.10.1016/j.asr.2017.01.011
  24. Odijk, D., Teunissen, P. J., and Huisman, L. (2012). First results of mixed GPS+ GIOVE single-frequency RTK in Australia. Journal of spatial science, 57(1):3–18, doi:10.1080/14498596.2012.679247.10.1080/14498596.2012.679247
  25. Odijk, D., Teunissen, P. J., and Khodabandeh, A. (2014). Galileo IOV RTK positioning: standalone and combined with GPS. Survey Review, 46(337):267–277, doi:10.1179/1752270613Y.0000000084.10.1179/1752270613Y.0000000084
  26. Odolinski, R., Teunissen, P., and Odijk, D. (2015). Combined GPS+ BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26(4):045801.
  27. Ogundipe, O., Ince, S., and Bonenberg, K. (2014). GNSS positioning under forest canopy. Disponível:< https://www.researchgate.net.
  28. O’Donnell, T., Fisher, J. W., Simposon, S., Brodin, G., Bryant, E., and Walsh, D. (2003). Galileo performance. GPS World, pages 38–45.
  29. Pan, L., Cai, C., Santerre, R., and Zhang, X. (2017). Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Survey Review, 49(354):197–205, doi:10.1080/00396265.2016.1151628.10.1080/00396265.2016.1151628
  30. Pirti, A., Arslan, N., Deveci, B., Aydin, O., Erkaya, H., and Hosbas, R. (2009). Real-time kinematic GPS for cadastral surveying. Survey Review, 41(314):339–351, doi:10.1179/003962609X451582.10.1179/003962609X451582
  31. Pirti, A., Gümüş, K., Erkaya, H., and Hoşbaş, R. G. (2010). Evaluating repeatability of RTK GPS/GLONASS near/under forest environment. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 31(1):23–33.
  32. Pirti, A., Yucel, M. A., and Gumus, K. (2013). Testing Real Time Kinematic GNSS (GPS and GPS/GLONASS) methods in obstructed and unobstructed sites. Geodetski vestnik, 57(3):498–512.
  33. Sigrist, P., Coppin, P., and Hermy, M. (1999). Impact of forest canopy on quality and accuracy of GPS measurements. International journal of remote sensing, 20(18):3595–3610.
  34. Simsky, A., Sleewaegen, J.-M., Hollreiser, M., and Crisci, M. (2006). Performance assessment of Galileo ranging signals transmitted by GSTB-V2 satellites. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 26 - 29, 2006, Fort Worth, TX, pages 1547–1559.
  35. Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G., and Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Advances in Space Research, 55(1):269–281, doi:10.1016/j.asr.2014.06.030.10.1016/j.asr.2014.06.030
  36. Steigenberger, P. and Montenbruck, O. (2017). Galileo status: orbits, clocks, and positioning. GPS solutions, 21(2):319–331.
  37. Wu, W., Guo, F., and Zheng, J. (2020). Analysis of Galileo signal-in-space range error and positioning performance during 2015–2018. Satellite Navigation, 1(6):1–13, doi:10.1186/s43020-019-0005-1.10.1186/s43020-019-0005-1
  38. Zaminpardaz, S. and Teunissen, P. J. (2017). Analysis of Galileo IOV+ FOC signals and E5 RTK performance. GPS Solutions, 21(4):1855–1870, doi:10.1007/s10291-017-0659-9.10.1007/s10291-017-0659-9
DOI: https://doi.org/10.2478/rgg-2022-0002 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 11 - 20
Submitted on: Jan 27, 2022
Accepted on: Mar 24, 2022
Published on: Jun 6, 2022
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Atınç Pırtı, M. Ali Yucel, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.