Have a personal or library account? Click to login
Research of the environmental temperature influence on the horizontal displacements of the Dnieper hydroelectric station dam (according to GNSS measurements) Cover

Research of the environmental temperature influence on the horizontal displacements of the Dnieper hydroelectric station dam (according to GNSS measurements)

Open Access
|Jun 2022

References

  1. (2020). Action plan for adaptation to the effects of climate change in the city of Zaporizhia. The project was approved by the decision of the 50th session of the City Council No. 38 from 3.06.2020. Last accessed January 2022.
  2. Chrzanowski, A., Szostak, A., and Steeves, R. (2011). Reliability and efficiency of dam deformation monitoring schemes. In Proceedings of the 2011 Annual Conference of Canadian Dam Association (CDA/ACB), Fredericton, NB, Canada, 15 October 2011, volume 15.
  3. Corsetti, M., Fossati, F., Manunta, M., and Marsella, M. (2018). Advanced SBAS-DInSAR technique for controlling large civil infrastructures: An application to the Genzano di Lucania dam. Sensors, 18(7):2371, doi:10.3390/s18072371.10.3390/s18072371
  4. Drummond, P. (2010). Combining CORS Networks, Automated Observations and Processing, for Network RTK Integrity Analysis and Deformation Monitoring. In Proceedings of the 15th FIG Congress Facing the Challenges, Sydney, Australia, 11–16 April 2010, pages 11–16.
  5. Kang, F. and Li, J. (2020). Displacement model for concrete dam safety monitoring via gaussian process regression considering extreme air temperature. Journal of Structural Engineering, 146(1):05019001, doi:10.1061/(ASCE)ST.1943-541X.0002467.10.1061/(ASCE)ST.1943-541X.0002467
  6. Kuzmanovic, V., Savic, L., and Mladenovic, N. (2013). Computation of thermal-stresses and contraction joint distance of rcc dams. Journal of Thermal Stresses, 36(2):112–134, doi:10.1080/01495739.2013.764795.10.1080/01495739.2013.764795
  7. Léger, P. and Leclerc, M. (2007). Hydrostatic, temperature, time-displacement model for concrete dams. Journal of engineering mechanics, 133(3):267–277, doi:10.1061/(ASCE)0733-9399(2007)133:3(267).10.1061/(ASCE)0733-9399(2007)133:3(267)
  8. Mata, J., Tavares de Castro, A., and Sá da Costa, J. (2013). Time-frequency analysis for concrete dam safety control: Correlation between the daily variation of structural response and air temperature. Engineering Structures, 48:658–665, doi:10.1016/j.engstruct.2012.12.013.10.1016/j.engstruct.2012.12.013
  9. Milillo, P., Bürgmann, R., Lundgren, P., Salzer, J., Perissin, D., Fielding, E., Biondi, F., and Milillo, G. (2016). Space geodetic monitoring of engineered structures: The ongoing destabilization of the mosul dam, iraq. Scientific reports, 6(1):37408, doi:10.1038/srep37408.10.1038/srep37408513863727922128
  10. Moroko, V. (2010). Dniproges: Black August 1941. Scientific works of the historical faculty of Zaporizhia National University.
  11. Oro, S., Mafioleti, T., Chaves Neto, A., Garcia, S., and Neumann, C. (2016). Study of the influence of temperature and water level of the reservoir about the displacement of a concrete dam. International Journal of Applied Mechanics and Engineering, 21(1):107– 120, doi:10.1515/ijame-2016-0007.10.1515/ijame-2016-0007
  12. Santillán, D., Salete, E., and Toledo, M. (2015). A methodology for the assessment of the effect of climate change on the thermal-strain-stress behaviour of structures. Engineering Structures, 92:123–141, doi:doi.org/10.1016/j.engstruct.2015.03.001.
  13. Scaioni, M., Marsella, M., Crosetto, M., Tornatore, V., and Wang, J. (2018). Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors, 18(11):3682, doi:10.3390/s18113682.10.3390/s18113682626387830380693
  14. Tretyak, K. and Palianytsia, B. (2021). Research of seasonal deformations of the dnipo hpp dam according to gnss measurements. Geodynamics, 30(1):5–16, doi:10.23939/jgd2021.01.005.10.23939/jgd2021.01.005
  15. Tretyak, K., Periy, S., Sidorov, I., and Babiy, L. (2015). Complex high accuracy satellite and field measurements of horizontal and vertical displacements of control geodetic network on dniester hydroelectric pumped power station (hpps). Geomatics and environmental engineering, 9(1):83–96, doi:10.7494/geom.2015.9.1.83.10.7494/geom.2015.9.1.83
  16. Yigit, C. O., Alcay, S., and Ceylan, A. (2016). Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data. Geomatics, Natural Hazards and Risk, 7(4):1489–1505, doi:10.1080/19475705.2015.1047902.10.1080/19475705.2015.1047902
  17. Zhang, Y., Yang, S., Liu, J., Qiu, D., Luo, X., and Fang, J. (2018). Evaluation and analysis of dam operating status using one clock-synchronized dual-antenna receiver. Journal of Sensors, 2018:9135630, doi:10.1155/2018/9135630.10.1155/2018/9135630
DOI: https://doi.org/10.2478/rgg-2022-0001 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 1 - 10
Submitted on: Dec 9, 2021
Accepted on: Jan 11, 2022
Published on: Jun 6, 2022
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Kornyliy Tretyak, Bohdan Palianytsia, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.