References
- Baarda, W. (1968). A testing procedure for use in geodetic networks. Publication on Geodesy, New Series, 2.
- Bakushinskii, A. B. (1992). The problem of the convergence of the iteratively regularized Gauss-Newton method. Computational Mathematics and Mathematical Physics, 32(9):1353–1359.
- Bell, I. F. and Roberts, D. (1973). Some notes on the application of orthogonal matrix to the least squares problem. In Symposium on Computational Methods in geometric Geodesy. Oxford.
- Bjerhammar, A. (1973). Theory of errors and generalized matrix inverses. Elsevier Scientific Publishing Co., Amsterdam-London-New York.
- Bossler, J. D. (1972). Bayesian inference in geodesy. The Ohio State University.
- Deutsch, R. (1965). Estimation theory. Prentice-Hall, Inc. Englewood Cliffs, N.J.
- George, S. (2010). On convergence of regularized modified Newton's method for nonlinear ill-posed problems. Journal of Inverse & Ill-Posed Problems, 18(2).
- Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics, 42(6):1887–1896, doi:10.1214/aoms/1177693054.
- Hanke, M. and Groetsch, C. W. (1998). Nonstationary iterated Tikhonov regularization. Journal of Optimization Theory and Applications, 98(1):37–53, doi:10.1023/A:1022680629327.
- Hausbrandt, S. (1954). Adjustment of trigonometric networks with the rejection of the assumption of faultlessness of the tie points (in Polish). Geodezja i Kartografia, 1.
- Holland, P. W. and Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics – Theory and Methods, 6(9):813–827, doi:10.1080/03610927708827533.
- Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):73 – 101, doi:10.1214/aoms/1177703732.
- Janusz, W. (1958). The weighting problem when aligning geodetic networks with the rejection of the assumption that the tie points are faultless (in Polish). Przegląd Geodezyjny, 12(14):462–464.
- Kadaj, R. (1978). Adjustment with outliers (in Polish). Przegląd Geodezyjny, 8:252–253.
- Kadaj, R. (1979). Two-stage method of adjustment of horizontal geodetic networks with the division of the system into sub-sets (in Polish). Zeszyty Naukowe AGH, 59.
- Kadaj, R. (1988). Eine Klasse von Schaetzverfahren mit praktischen Anwendungen. ZfV, H4.
- Levenberg, K. (1944). A method for the solution of certain nonlinear problems in least squares. Quarterly of applied mathematics, 2(2):164–168.
- Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441, doi:10.1137/0111030.
- Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3):591–612, doi:10.1080/00401706.1970.10488699.
- Mehsner, A. (2013). Comparison of Different Optimization and Regularization Methods for the Solution of Inverse Problems. PhD thesis, Institut für Grundlagen und Theorie der Elektrotechnik Technische Universität Graz, 8010 Graz.
- Mittermayer, E. (1972). Zur Ausgleichung freier Netze. ZfV, 11.
- Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26:394–395.
- Penrose, R. (1955). A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge University Press, doi:10.1017/S0305004100030401.
- Phillips, D. L. (1962). A technique for the numerical solution of certain integral equations of the first kind. Journal of the ACM (JACM), 9(1):84–97.
- Prószyński, W. and Kwaśniak, M. (2019). The effect of observation correlations upon the basic characteristics of reliability matrix as oblique projection operator. Journal of Geodesy, 93(8):1197–1206, doi:10.1007/s00190-019-01236-y.
- Scherzer, O. (1993). Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill—posed problems. Numerische Mathematik, 66(1):259–279, doi:10.1007/BF01385697.
- Tikhonov, A. (1965). Application of the regularization method in nonlinear problems. J. Comp. Math. Math. Phys, 5(3):363–373.
- Tikhonov, A. N. (1963). On the solution of ill-posed problems and the method of regularization. In Doklady Akademii Nauk, volume 151, pages 501–504. Russian Academy of Sciences.
- Wilkinson, J. H. (1994). Rounding errors in algebraic processes. Courier Corporation, Prentice Hall.
- Wiśniewski, Z. (2013). Advanced Methods for Developing Geodetic Observations with Examples. UWM in Olsztyn.
