Have a personal or library account? Click to login
Study of the Effectiveness of Different Kalman Filtering Methods and Smoothers in Object Tracking Based on Simulation Tests Cover

Study of the Effectiveness of Different Kalman Filtering Methods and Smoothers in Object Tracking Based on Simulation Tests

Open Access
|Feb 2015

References

  1. Andersen, B. D. O., Moore, J. B. (1979). „Filtracja optymalna.” WNT, Warszawa, 1984. (oryg. Andersen B.D.O., Moore J. B. „Optimal filtering” Prentice-HallInc.,EnglewoodCliffs, New Jersey, USA, 1979).
  2. Candy, J. V. (1987). „Signal Processing–The Model-Based Approch” McGraw-Hill, Singapore.
  3. Christian, K. (2000). „Improvements of GNSS Receiver Performance Using Deeply Coupled INS measurements.” IONGPS.
  4. Grejner-Brzezinska, D. A., Toth C. K., and Yi Y. (2005) „On Improving Navigation Accuracy of GPS/INS Systems.” PhotogrammetricEngineeringandRemoteSensing, Vol. 71, No. 4, 377–389.10.14358/PERS.71.4.377
  5. Ito, K., Xiong, K. (2000). „Gaussian Filters for Nonlinear Filtering Problems.” IEEETransactionsonAutomaticControl, 45(5), 910–927.10.1109/CDC.2000.912021
  6. Kalman R. E., (1960) „A New Approach to Linear Filtering and Prediction Problems”, Trans. of the ASME - Journal of Basic Engineering, p. 35-45.10.1115/1.3662552
  7. Kaniewski, P., (2006) „Aircraft Positioning with INS/GNSS Integrated System” Molecular and Quantum Acoustics, Vol. 27, p. 149-168.
  8. Kim, H et al. (2003) „An Ultra Tightly coupled GPS/INS Integration using Federated Kalman Filter.” IONGPS.
  9. Knight, D. T. (1999). „Rapid Development of Tightly Coupled GPS/INS Systems.” ProceedingofIONInternationalMeeting, Nashville, Tennessee.
  10. Kwiecień, J., Malinowski, M., Bujnowski, S., Bujarkiewicz, B. (2006) „ATR TRACK III: The real-time GPS for public security.” ReportsonGeodesy, No. 2(77), 179-185.
  11. Konatowski, S.; Sipa, T. (2004) „Position estimation using Unscented Kalman Filter” Annual of Navigation, No. 8, p. 97-110.
  12. Nørgaard M., Poulsen N., Ravn O., (1998) „Advances in Derivative-Free State Estimation for Nonlinear Systems”, Technical Report IMM-REP-1998-15, Department of Mathematical Modelling, DTU, (revised Oct. 2004).
  13. Nørgaard M., Poulsen N., Ravn O., (2000) „New Developments in State Estimation for Nonlinear Systems”, Automatica, 36.10.1016/S0005-1098(00)00089-3
  14. Rauch, H. E., Tung, F., Striebel, C. T., (1965) „Maximum likelihood estimates of linear dynamic systems”. AIAA Journal, 3(8):1445–1450.10.2514/3.3166
  15. Rogers, R.M. (2007). „Applied Mathematics in Integrated Navigation Systems.” 3rd ed. Blacksburg, VA, USA: AmericanInstituteofAeronauticsandAstronautics, Inc.
  16. Särkkä, S. (2006) „Recursive Bayesian Inference on Stochastic Differential Equations.” Doctoraldissertation,HelsinkiUniversityofTechnologyLaboratoryofComputationalEngineeringPublications Raport B54, Espoo.
  17. Särkkä S., Vehtari A., and Lampinen J., (2007) „Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother”, In Proceedings of ESTSP 2007, Espoo.
  18. Särkkä, S., (2008) „Unscented Rauch-Tung-Striebel smoother”. IEEE Transactions on Automatic Control, 53(3):845–849.10.1109/TAC.2008.919531
  19. Shin E, El-Sheimy N., (2005) „Backward Smoothing for Pipeline Surveying Applications” in Proceedings of ION NTM, pp. 921-927, U. S. Institute of Navigation, Fairfax VA, 24-26 January, San Diego CA.
  20. Shin E., (2005) „Estimation Techniques for Low-Cost Inertial Navigation”, PhD Thesis, Department of Geomatics Engineering, University of Calgary, UCGE Report No. 20219, Canada.
  21. van der Merwe, R., Wan, E.A. (2001) „Efficient Derivative-Free Kalman Filters for Online Learning.” InProc.ofESANN, Bruges.
  22. van der Merwe, R., Wan, E.A. (2001) „The square-root unscented kalman filter for state and parameter-estimation.” InProceedingsoftheInternationalConferenceonAcoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah.
  23. van der Merwe. R., Wan. E.A., Julier. S.J. (2004). „Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion:Applications to Integrated Navigation.” InProceedingsoftheAIAAGuidance,NavigationandControlConference, Providence, RI.
  24. Vorbrich, K.K., (2011) „Analysis of some low- and high-dynamics errors of Low-Cost IMU”, Geodesy and Cartography, Vol. 60, No 1, 2011, pp. 35-59.10.2478/v10277-012-0016-7
DOI: https://doi.org/10.2478/rgg-2014-0008 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 1 - 22
Published on: Feb 3, 2015
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Marcin Malinowski, Janusz Kwiecień, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.