References
- Agugiaro, G., Nex, F., Remondino, F., De Filippi, R., Droghetti, S., & Furlanello, C. (2012). Solar radiation estimation on building roofs and web-based solar cadaster. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-2, 177–182. https://doi.org/10.5194/isprsannals-I-2-177-2012
- Albu, S., Ivanov, V., & Albu, I. (2023). Assessment of damage caused by the reduction of daylight lighting duration of residential constructions in the conditions of the Republic of Moldova. Real Estate Management and Valuation, 31(2), 39–51. https://doi.org/10.2478/remav-2023-0012
- Ballif, C., Perret-Aebi, L.-E., Lufkin, S., & Rey, E. (2018). Integrated thinking for photovoltaics in buildings. Nature Energy, 3(6), 438–442. https://doi.org/10.1038/s41560-018-0176-2
- Bergamasco, L., & Asinari, P. (2011). Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Further improvements by ortho-image analysis and application to Turin (Italy). Solar Energy, 85(5), 1041. https://doi.org/10.1016/j.solener.2011.02.022
- Bujarkiewicz, A., & Sztubecki, J. (2018). Possibilities for using solar energy to fulfil the energy needs of buildings in the city centre. E3S Web of Conferences, 45, 00013. https://doi.org/10.1051/e3sconf/20184500013
- Bujarkiewicz, A., Sztubecka, M., & Sztubecki, J. (2018a). The study of using GIS tools in sustainable management of solar energy. Civil and Environmental Engineering Reports, 28(1), 26–39. https://doi.org/10.2478/ceer-2018-0003
- Caamaño-Martin, E., Higueras, E., Neila, F. J., Useros, I., Masa-Bote, D., Tortora, F., Díaz-Palacios, S., Marrero, X., Alonso, A., Saade, A., Jedliczka, M., Miquel, C., de l’Epine, M., Willdbrett, E., Kjellsson, E., Cornander, A., & Fernandes, J… (2012). Solar potential calculation at city and district levels. WIT Transactions on Ecology and the Environment, 155, 675–685. https://doi.org/10.2495/SC120572
- De Boeck, L., Van Asch, S., De Bruecker, P., & Audenaert, A. (2016). Comparison of support policies for residential photovoltaic systems in the major EU markets through investment profitability. Renewable Energy, 87, 42–53. https://doi.org/10.1016/j.renene.2015.09.063
- Energy Regulatory Office in Poland. (2024). RES: National RES potential in numbers. Retrieved from http://www.ure.gov.pl/EuropeanCommission. (2022, May 18). REPowerEU Plan. https://energy.ec.europa.eu/topics/renewable-energy/solar-energy_en
- European Commission. (2023a). EU Solar Energy Strategy and European Solar Rooftops Initiative. https://energy.ec.europa.eu/topics/renewable-energy/solar-energy/european-solar-charter_en
- European Commission. (2023b). Revised Energy Performance of Buildings Directive (EPBD). https://energy.ec.europa.eu/topics/energy-efficiency/energy-performance-buildings/energy-performance-buildings-directive/solar-energy-buildings_en
- European Commission. (2023c). Climate, Energy and Environmental Aid Guidelines (CEEAG). https://en.wikipedia.org/wiki/CEEAG
- Forinash, K. (2017). Physics and the environment. Morgan & Claypool Publishers. https://doi.org/10.1088/978-1-6817-4493-3
- Fu, P., & Rich, P. M. (2000). The Solar Analyst 1.0 Manual. Helios Environmental Modeling Institute (HEMI), USA. Retrieved from http://professorpaul.com/publications/fu_rich_2000_solaranalyst.pdf
- Geodesy and Municipal Cadastre Board GEOPOZ in Poznań. (2025). Retrieved from https://geopoz.poznan.pl/
- Gorgolis, G., & Karamanis, D. (2016). Solar energy materials for glazing technologies. Solar Energy Materials and Solar Cells, 144, 559-578. https://doi.org/10.1016/j.solmat.2015.09.040
- Hagemann, I. B. (2004). Examples of successful architectural integration of PV: Germany. Progress in Photovoltaics: Research and Applications, 12(6), 461–470. https://doi.org/10.1002/pip.561
- Joint Research Centre. EU Science Hub. (2025). Photovoltaic Geographical Information System (PVGIS). Retrieved from https://re.jrc.ec.europa.eu/pvg_tools/en/
- Lu, X., Li, G., Wang, A., Xiong, Q., Lin, B., & Lv, G. (2021). Estimating the photovoltaic potential of building facades and roofs using the industry foundation classes. ISPRS International Journal of Geo-Information, 10(12), 827. https://doi.org/10.3390/ijgi10120827
- Lucchi, E., Garegnani, G., Maturi, L., & Moser, D. (2014). International Conference on Energy Efficiency and Historic Buildings. Retrieved from https://www.erfgoedenergieloket.be/wp-content/uploads/2018/12/2014.pdf
- Machín, A., & Márquez, F. (2024). Advancements in photovoltaic cell materials: Silicon, organic, and perovskite solar cells. Materials (Basel), 17, 1165. https://doi.org/10.3390/ma17051165 PMID:38473635
- Mrówczyńska, M., & Wawer, M. (2015). Attempt to prepare a solar cadastre for the town of Zielona Góra. Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 62 (4/15), 321-333. https://doi.org/10.7862/rb.2015.198
- Municipal Spatial Information System – MSIP Kraków. (2025). Retrieved from https://msip.krakow.pl/
- Perpiña Castillo, C., Batista e Silva, F., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 88, 86–99. https://doi.org/10.1016/j.enpol.2015.10.004
- Photovoltaic market in Poland. (2024). Warsaw: Institute for Renewable Energy. Retrieved from https://ieo.pl/en/
- Piper, D. L. A. (2023, May 25). Solar energy: Where does France stand and what are the consequences for the real estate sector? https://www.dlapiper.com/enfr/insights/publications/2023/05/solar-energy-where-does-france-stand-and-what-are-the-consequences-for-the-realestate-sector
- Polish Central Node of Spatial Information Infrastructure. (2025). https://www.geoportal.gov.pl/
- Redweik, P., Catita, C., & Brito, M. (2013). Solar energy potential on roofs and facades in an urban landscape. Solar Energy, 97, 332–341. https://doi.org/10.1016/j.solener.2013.08.036
- Rich, P. M., Dubayah, R., Hetrick, W. A., & Saving, S. C. (1994). Using viewshed models to calculate intercepted solar radiation: Applications in ecology. In American Society for Photogrammetry and Remote Sensing Technical Papers. Retrieved from https://professorpaul.com/publications/rich_et_al_1994_asprs.pdf
- Stoll, B. L., Smith, T. A., & Deinert, M. R. (2013). Potential for rooftop photovoltaics in Tokyo to replace nuclear capacity. Environmental Research Letters, 8, 014042. https://doi.org/10.1088/1748-9326/8/1/014042
- Sun, Y., Raman, A. P., & Fan, S. (2017). An optics-based approach to thermal management of photovoltaics. EEE Journal of Photovoltaics PP(99). https://doi.org/10.1109/JPHOTOV.2016.2646062
- Šúri, M., Huld, T., & Dunlop, E. D. (2005). PV-GIS: A web-based solar radiation database for the calculation of PV potential in Europe. International Journal of Sustainable Energy, 24, 55–67. https://doi.org/10.1080/14786450512331329556
- Yearly sum of global irradiation on optimally-inclined surface in Poland, PVGIS, European Commission. (2024, September 29). Retrieved from https://re.jrc.ec.europa.eu/pvg_download/map_pdfs/G_hor_PL.png
- Źróbek, S., Renigier-Biłozor, M., & Źróbek, R. (2024). From administrative price to market value of real estate: The evolution of the valuation system in Poland. Real Estate Management and Valuation, 32(3), 127–142. https://doi.org/10.2478/remav-2024-0030