Have a personal or library account? Click to login
Property Valuation, New Technologies and Digitalisation Challenges in Botswana Cover

Property Valuation, New Technologies and Digitalisation Challenges in Botswana

Open Access
|Oct 2025

References

  1. Abidoye, R. B., & Chan, A. P. (2016). The application of advanced property valuation methods in practice: Evidence from Hong Kong and Nigeria. Property Management, 34(5), 364-380. https://doi.org/10.26190/unsworks/27029
  2. Abidoye, R. B., & Chan, A. P. (2017). Artificial neural network in property valuation: Application framework and research trend. Property Management, 35(5), 554–571. https://doi.org/10.1108/PM-06-2016-0027
  3. Abidoye, R. B., & Chan, A. P. (2017). Valuers’ receptiveness to the application of artificial intelligence in property valuation. Pacific Rim Property Research Journal, 175-193. https://doi.org/10.1080/14445921.2017.1299453
  4. Abidoye, R. B., & Chan, A. P. (2018). Achieving property valuation accuracy in developing countries: The implication of data source. International Journal of Housing Markets and Analysis, 11(3), 573–585. https://doi.org/10.1108/IJHMA-07-2017-0068
  5. Abidoye, R. B., Junge, M., Lam, T. Y. M., Oyedokun, T. B., & Tipping, M. L. (2019). Property valuation methods in practice: evidence from Australia. Property Management, 37(5), 701-718. https://doi.org/10.1108/PM-04-2019-0018
  6. Abidoye, R., Ma, J., & Lee, C. (2021). Barriers, drivers and prospects of the adoption of artificial intelligence property valuation methods in practice. Pacific Rim Property Research Journal, 27(2), 89–106. https://doi.org/10.1080/14445921.2021.2001724
  7. Abiojola, M., & Oletobo, A. (2011). Assessment of Accuracy of Valuation. Global Journal of Engineering and Technology, 4(1), 45–51. https://eprints.covenantuniversity.edu.ng/3703/1/Ajibola%20and%20Oletubo.pdf
  8. Addae-Dapaah, K. (2001). Valuation accuracy - A problematic enquiry. European Real Estate Society, 1-12. Retrieved March 19, 2025, from https://eres.architexturez.net/system/files/pdf/eres2001_101.content.pdf
  9. Adegoke, O. J. (2016). Effects of valuation variance and inaccuracy on Nigerian commercial property market: An empirical study. Journal of Property Investment & Finance, 34(3), 276–292. https://doi.org/10.1108/JPIF-08-2014-0056
  10. Adilieme, C. M., Abidoye, R. B., & Lee, C. L. (2024). Blockchain in property valuation: perspectives of property professionals in Nigeria. 30th Annual Pacific Rim Real Estate Society Conference (pp. 62-72). Gold Coast, Australia: Pacific Real Estate Society. https://doi.org/10.26190/unsworks/30358
  11. Adilieme, C. M., Abidoye, R. B., & Lee, C. L. (2025). Barriers and prospects for the adoption of blockchain technology in property valuation. Journal of European Real Estate Research, 18(1), 84–104. https://doi.org/10.1108/JERER-04-2024-0022
  12. Ajibola, M. (2010). Valuation inaccuracy: An examination of causes in Lagos Metropolis. Journal of Sustainable Development, 3(4), 186–193. https://doi.org/10.5539/jsd.v3n4p187
  13. Ajibola, M. O., & Oletubo, A. A. (2011). Assessment of accuracy of valuation in the property market in Lagos Metropolis. Global Journal of Engineering & Technology, 4(1), 45-51. doi: https://eprints.covenantuniversity.edu.ng/3703/1/Ajibola%20and%20Oletubo.pdf
  14. Aluko, B. T., Ajayl, C. A., & Amidu, A. R. (2004). The estate surveyors and valuers and the magic number: A point estimate or range of value. International Journal of Strategic Property Management, 8(3), 149–162. https://doi.org/10.3846/1648715X.2004.9637514
  15. Ashaolu, T. A., & Bello, M. O. (2022). Acquired body of knowledge: A core valuation influencing factor in inter-valuer variance. Journal of African Real Estate Research, 7(1), 1–17. https://doi.org/10.15641/jarer.v7i1.1115
  16. Atilola, M. I., Ismail, M. A., Achu, K., & Bujang, A. A. (2019). An evaluation of factors causing variance in property assessment. Journal of the Malaysian Institute of Planners, 17(9), 82–93. https://doi.org/10.21837/pmjournal.v17.i9.588
  17. Babawale, G. K. (2013). Designing appropriate valuation models for sustainable property tax systems in developing countries. International Journal of Law and Management, 55(3), 226–246. https://doi.org/10.1108/17542431311327646
  18. Babawale, G. K. (2013). Valuation accuracy – the myth, expectation and reality. African Journal of Economic and Management Studies, 4(3), 387–406. https://doi.org/10.1108/AJEMS-11-2011-0106
  19. Baffor-Awuah, K. G., & Gyamfi-Yeboah, F. (2017). The role of task complexity in valuation errors analysis in a developing real estate market. Journal of Property Research, 34(1), 54–76. https://doi.org/10.1080/09599916.2017.1315444
  20. Bellman, L. (2022). In the mind of the property appraiser: Studies of the property valuation. Mid Sweden University, Department of Economics, Geography, Law and Tourism. Faculty of Human Science. Retrieved February 24, 2025, from https://www.divaportal.org/smash/get/diva2:1625578/FULLTEXT02.pdf
  21. Bidanset, P. E., & Rakow, R. (2022). Survey on the use of Automated Valuation Models (AVMs) in government assessment offices: An analysis of AVM use, acceptance and barriers to more widespread implementation. Journal of Property Tax Assessment & Administration, 19(2), 1–28. https://doi.org/10.63642/1357-1419.1250
  22. Boshoff, D., & De Kock, L. (2013). Investigating the use of Automated Valuation Models (AVMs) in the South African commercial property market. Acta Structilia, 20(1), 1–21. https://doi.org/10.38140/as.v20i1.131
  23. Chan, A. P., & Abidoye, R. B. (2019). Advanced property valuation techniques and valuation accuracy: Deciphering the artificial neural network technique. International Journal of Real Estate & Land Planning, 2, 1-9. https://doi.org/10.26262/reland.v2i0.6748
  24. Chaphalkar, N., & Sandbhor, S. (2018). Use of artificial intelligence in real property valuation. [IJET]. IACSIT International Journal of Engineering and Technology, 5(3), 2334–2337. Retrieved January 21, 2025, from https://www.enggjournals.com/ijet/docs/IJET13-05-03-087.pdf
  25. Cheloti, I., & Mooya, M. (2021). Valuation problems in developing countries: A new perspective. Land (Basel), 10(12), 1352. https://doi.org/10.3390/land10121352
  26. Crosby, N. (2000). Valuation accuracy, variation and bias in the context of standards and expectations. Journal of Property Investment & Finance, 18(2), 130–161. https://doi.org/10.1108/14635780010324240
  27. Demetriou, D. (2016). The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework. Land use policy, 54, 487-498. Land Use Policy, 54, 487–498. https://doi.org/10.1016/j.landusepol.2016.03.008
  28. Droj, G., Kwartnik-Pruc, A., & Droj, L. (2024). A comprehensive overview regarding the impact of GIS on property valuation. ISPRS International Journal of Geo-Information, 13(6), 175. https://doi.org/10.3390/ijgi13060175
  29. Dube, C. (2012). Unscrupulous house valuers put BBS at risk. Mmegi newspaper. Retrieved April 05, 2025, from https://www.mmegi.bw/business/unscrupulous-house-valuersput-bbs-at-risk/news
  30. Effiong, B. J. (2015). A comparative study of valuation variance and accuracy between Nigeria and the UK. Journal of International Letters of Social and Humanistic Sciences, 57, 94–105. https://doi.org/10.18052/www.scipress.com/ILSHS.57.94
  31. Evans, K.M., Lausberg, C., & Sui Sang How, J. (2019). Reducing property appraisal bias with decision support systems: An experimental investigation in the South African property market., 4(1), 108-138. Journal of African Real Estate Research, 4(1), 108–138. https://doi.org/10.15641/jarer.v4i1.729
  32. Gambo, Y. L., & Anyakora, M. I. (2013). Margin of valuation error among Nigerian valuers: postulating an acceptable limit. ATBU Journal of Environmental Technology, 6(1), 54-65.
  33. Garcia-Teruel, R. M. (2020). Legal challenges and opportunities of blockchain technology in the real estate sector. Journal of Property. Planning and Environmental Law, 12(2), 129–145. https://doi.org/10.1108/JPPEL-07-2019-0039
  34. Gatheru, S. W., & Nyika, D. (2015). Application of Geographic Information System in property valuation. International Journal of Scientific & Technology Research, 4(8), 61–72. Retrieved April 20, 2025, from https://www.ijstr.org/finalprint/aug2015/Application-Of-Geographic-Information-System-In-Property-Valuation.pdf
  35. Glumac, B., & Des Rosiers, F. (2018). Real estate and land property automated valuation systems: A taxonomy and conceptual model. University of Canada. Luxembourg: Liser: Luxembourg Institute of Socio-economic Research. Retrieved April 17, 2025, from https://liser.elsevierpure.com/ws/portalfiles/portal/11504827/WP_N_2018_09.pdf https://doi.org/10.15396/eres2018_148
  36. Glumac, B., & Des Rosiers, F. (2021). Towards a taxonomy for real estate and land automated valuation systems. Journal of Property Investment & Finance, 39(5), 450-463. https://doi.org/10.1108/JPIF-07-2020-0087
  37. Greer, T. H., & Murtaza, M. B. (2020). Technologies to improve the decision-making process of real estate appraisers: XML, Intelligent Agent, AVMs and Web Services. Journal of Business & Economics Research, 1(6), 63–72. https://doi.org/10.19030/jber.v1i6.3023
  38. Grybauskas, A., Pilinkienė, V., & Stundžienė, A. (2021). Predictive analytics using Big Data for the real estate market during the COVID-19 pandemic. Journal of Big Data, 8(1), 1-20. https://doi.org/10.1186/s40537-021-00476-0 PMID:34367876
  39. Hoxha, V., & Sadiku, S. (2019). Study of factors influencing the decision to adopt the blockchain technology in real estate transactions in Kosovo. Property Management, 37(5), 684–700. https://doi.org/10.1108/PM-01-2019-0002
  40. Ibrahim, I., Daud, D., Sa’ad, U. B., Yaro, H. U., Isamil, W. I., & Nor, N. M. (2023). Application of Computer Assisted Mass Appraisal (CAMA) in Real Estate Profession in Nigeria: A review of valuation modern techniques. International Conference of Built Environment & Suyveying. Universiti Teknologi Malaysia., Retrieved from https://www.researchgate.net/profile/Isyaku-Ibrahim/publication/389561660_application_of_computer_assisted_mass_appraisal_cama_in_real_estate_profession_in_nigeria_a_review_of_valuation_modern_techniques/links/67d7cf1a478c5a3feda360d0/application-of-compu
  41. IVSC. (2022). International Valuation Standards. Retrieved from https://viewpoint.pwc.com/dt/gx/en/ivsc/international_valuat/assets/IVS-effective-31-Jan-2022.pdf
  42. Jahanshiri, E., Buyong, T., & Mohd, A. R. (2011). A review of property valuation models. Journal of Science and Technology, 19(5), 23–30. Retrieved March 19, 2025, from https://core.ac.uk/download/pdf/153802057.pdf
  43. Kampamba, J. (2020). An evaluation of rating valuation practice and administration in Gaborone, Botswana: The development of a cost effective automated valuation model (AVM). University of Botswana, Department of Architecture and Planning. Gaborone: University of Botswana. Retrieved August 2024, 13, from file:///C:/Users/user/Downloads/DAPConferenceProceedings20 212%20(9).pdf
  44. Kampamba, J., & Ratlou, M. M. (2021). An assessment of factors that lead to the non-application of GIS infused automatic valuation models in property valuation in Gaborone. African Real Estate Society (AFRES), 201-220. Retrieved April 06, 2025, from https://afres.architexturez.net/doc/oai-afres-id-2021-030
  45. Kampamba, J., Mosesane, T., & Emoh, F. I. (2022). An assessment of factors leading to slow adoption of property technology in the real estate profession in Gaborone. DAP Virtual Conference 2021 (pp. 200-219). Gaborone: Department of Architecture and Planning, University of Botswana.
  46. Kang, Y., Zhang, F., Peng, W., Gao, S., Rao, J., Duarte, F., & Ratti, C. (2021). Understanding house price appreciation using multisource big geo-data and machine learning. Land Use Policy, 111, 104919. https://doi.org/10.1016/j.landusepol.2020.104919
  47. Kayode Babawale, G. K., & Omirin, M. (2012). An assessment of the relative impact of factors influencing inaccuracy in valuation. International Journal of Housing Markets and Analysis, 5(2), 145–160. https://doi.org/10.1108/17538271211225904
  48. Kok, N., Koponen, E., & Martinez-Barbosa, C. A. (2017). Big data in real estate? From manual appraisal to automated valuation. Journal of Portfolio Management, 43(6), 202–211. https://doi.org/10.3905/jpm.2017.43.6.202
  49. Liu, N., Duncan, R., & Chapman, A. (2020). A critical review of distributed ledger technology and its applications in real estate. Royal Institution of Chartered Surveyors. doi:https:/www.rics.org/globalassets/rcswebsite/media/knowledge/research-reports/rics0077-001-distributed-ledger-technology-submittedforpublicationreport-final.pdf
  50. Liu, X., Deng, Z., & Wang, T. (2011). Real estate appraisal system based on GIS and BP neural network. Transactions of Nonferrous Metals Society of China, 21(3), s626–s630. https://doi.org/10.1016/S1003-6326(12)61652-5
  51. Luca Rampini, Fulvio Re Cecconi; Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment & Finance 28 September 2022; 40 (6): 588–611. https://doi.org/10.1108/JPIF-08-2021-0073
  52. Mengwe, D. (2013). Valuations for secured lending and lenders’ perspectives in Botswana. Valuation Edge. Boidus Focus, 8-10. Retrieved February 19, 2025, from https://www.biv.org.bw/assets/attachments/valuation_edge1.pdf
  53. Metzner, N., & Kindt, A. (2018). Determination of the parameters of automated valuation models for the hedonic property valuation of residential properties: A literature-based approach. International Journal of Housing Markets and Analysis, 11(1), 73–100. https://doi.org/10.1108/IJHMA-02-2017-0018
  54. Mohammad, N. E., Mohd Ali, H. M., & Jasimin, T. H. (2018). Valuer’s behavioural uncertainties in property valuation decision making. Planning Malaysia, 16(1), 239–250. https://doi.org/10.21837/pmjournal.v16.i5.428
  55. Moore, J. W., & Myers, J. (2010). Using geographic-attribute weighted regression for CAMA modeling. Journal of Property Tax Assessment & Administration, 7(3), 5–28. https://doi.org/10.63642/1357-1419.1113
  56. Mosesane, T. T., Kampamba, J., & Emoh, F. (2021). An assessment of the factors leading to slow adoption of property technology in the real estate profession in Gaborone. DAP Virtual Conference - Towards Achieving Sustainable Development Goals (SDGS) (pp. 200-218). Gaborone: Department of Architecture and Planning. Retrieved January 12, 2025, from file:///C:/Users/user/Downloads/DAPConferenceProceedings20 212%20(9).pdf
  57. Munshifwa, E. K. (2021). An investigation into the use of “hybrid” adjustment techniques in the application of the sales comparison method in residential valuation. Real Estate Management and Valuation, 29(1), 1–11. https://doi.org/10.2478/remav-2021-0001
  58. Munshifwa, E. K., Jain, N., Kaunda, B. S., Masiba, L., Lungu, J., Chunda-Mwango, N., Mushinge, A., & Ngoma, W. (2016). Variances in rateable values in Rating Practice in Zambia: The role of mental models in value assessment. Pacific Rim Property Research Journal, 22(2), 181–201. https://doi.org/10.1080/14445921.2016.1225151
  59. Muzahem Alsahan, I., & Ibraheem AlZaidan, Z. (2024). Unleashing the power of artificial intelligence in real estate valuation: Opportunities and challenges ahead. Journal of Knowledge Learning and Science Technology, 3(2), 1–10. https://doi.org/10.60087/jklst.vol3.n2.p10
  60. Naeem, N., Rana, I. A., & Nasir, A. R. (2023). Digital real estate: A review of the technologies and tools transforming the industry and society. Smart Construction and Sustainable Cities, 1, 15. https://doi.org/10.1007/s44268-023-00016-0
  61. Namangale, D., & Chimalizeni, E. (2022). Adoption of Automated Valuation Models in Malawi; Valuers’ perception. Journal of African Real Estate Research, 6(2), 51–61. https://doi.org/10.15641/jarer.v6i2.1008
  62. Narayan, S. A., & Biswas, S. S. (2020). Opportunities and challenges of implementing the international valuation standards in Fiji. The Journal of Pacific Studies, 40(1), 51–80. https://doi.org/10.33318/jpacs.2020.40(1)-3
  63. Narayan, S., Biswas, S., & Sahib, L. (2017). Issues facing standardization of property valuation practices: A case study of Suva, Fiji. World Bank Conference on Land and Poverty. March 20-24, pp. 12-26. Washington DC: World Bank Conference. doi:chromeextension:// efaidnbmnnnibpcajpcglclefindmkaj/https://d1wqtxts1xzle7.cloudfront.net/78649345/Narayan_Issues_Facing_Standardisation_of_Property_Valuationlibre.pdf?1642133685=&response-contentdisposition=inline%3B+filename%3DIssues_facing_standardis
  64. Oduyemi, O., Okoroh, M., & Fajana, O. (2016). Property valuation inaccuracy in commercial office buildings: Establishing the key causative factors. International Journal of Real Estate Studies, 10(1), 1-11. Available at SSRN: https://ssrn.com/abstract=2810219
  65. Oduyemi, O., Okoroh, M., & Oluwaseun, F. (2016). Property valuation inaccuracy in commercial office buildings: Establishing the key causative factors. International Journal of Real Estate Studies, 10(1), 34-43. https://ssrn.com/abstract=2810219
  66. Oladokun, S. O., & Mooya, M. M. (2024). Another look at data challenges in property valuation practice: A case of Lagos property market. Journal of Property Investment & Finance, 42(4), 325–347. https://doi.org/10.1108/JPIF-07-2023-0069
  67. Onwuanyi, N. (2020). A review of property data challenges in Nigeria. Journal of African Real Estate Research, 5(2), 15–40. https://doi.org/10.15641/jarer.v5i2.842
  68. Pickett, J. T., Cullen, F. T., Bushway, S. D., Chiricos, T., & Alepert, G. (2018). The response rate test: nonresponse bias and the future of survey research in criminology and criminal justice. The Criminologist, 43(1), 7-11. Retrieved from https://ssrn.com/abstract=3103018
  69. Rampini, L., & Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment & Finance, 40(6), 588–611. https://doi.org/10.1108/JPIF-08-2021-0073
  70. Reddy, G.P.O. (2018). Geographic Information System: Principles and applications. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_3
  71. Renigier-Biłozor, M., Zrobek, S., & Walacik, M. (2022). Modern technologies in the real estate market - Opponents vs proponents of their use: Does new category of value solve the problem? Sustainability (Basel), 14(20), 13403. https://doi.org/10.3390/su142013403
  72. Root, T. H., Strader, T. J., & Huang, Y. J. (2023). A review of machine learning approaches for real estate valuation. Journal of the Midwest Association for Information Systems, 2(2), 9-28. https://jmwais.org/wpcontent/uploads/sites/8/2023/07/V2023.I2.A2.pdf
  73. Teang, K., & Lu, Y. (2021). Property valuations by machine learning and hedonic pricing models: A case study. MSc Thesis, KTH Royal Institution of Technology, Department of Real Estate and Construction Management, School of Architecture and the Built Environment. doi:https://www.divaportal.org/smash/get/diva2:1576509/FULLTEXT01.pdf
  74. Ullah, F., Sepasgozar, S. M. E., & Wang, C. (2018). A systematic review of smart real estate technology: Drivers of, and barrier to the use of digital disruptive technologies and online platforms. Sustainability (Basel), 10(9), 3142–3150. https://doi.org/10.3390/su10093142
  75. Wang, D., & Li, V. J. (2019). Mass appraisal models of real estate in the 21st century: A systematic literature review. Sustainability (Basel), 11(24), 7006–7012. https://doi.org/10.3390/su11247006
  76. Waters, M. J. (2019). A critical examination of property valuation variance in Dubai. Herriot-Watt University, School of Energy, Geoscience, Infrastructure and Society. The Urban Institute. doi: http://hdl.handle.net/10399/4200
  77. Wouda, H. P., & Opdenakker, R. (2019). Blockchain technology in commercial real estate transactions. Journal of Property Investment & Finance, 37(6), 570–579. https://doi.org/10.1108/JPIF-06-2019-0085
  78. Yakub, A. A., Mohd. Ali, H., Achu, K., Abdul Jalil, R., & Salawu, A. O. (2021). An integrated approach on Artificial Intelligence (AI) using ANFIS and ANN for multiple criteria real estate price prediction. Journal of the Malaysian Institute of Planners, 19(3), 270–282. https://doi.org/10.21837/pm.v19i17.1005
  79. Zhou, L., Shi, L., & Zhang, S. (2015). Database construction of real estate assessment based on big data. 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (pp. 92-96). Tokyo, Japan: Atlantis Press. https://doi.org/10.2991/iccmcee-15.2015.19
Language: English
Page range: 70 - 85
Submitted on: May 20, 2025
Accepted on: Oct 28, 2025
Published on: Oct 31, 2025
Published by: Real Estate Management and Valuation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Kefilwe Omphemetse Seketeme, Ephraim Kabunda Munshifwa, published by Real Estate Management and Valuation
This work is licensed under the Creative Commons Attribution 4.0 License.