References
- Abidoye, R. B., & Chan, A. P. (2016). The application of advanced property valuation methods in practice: Evidence from Hong Kong and Nigeria. Property Management, 34(5), 364-380. https://doi.org/10.26190/unsworks/27029
- Abidoye, R. B., & Chan, A. P. (2017). Artificial neural network in property valuation: Application framework and research trend. Property Management, 35(5), 554–571. https://doi.org/10.1108/PM-06-2016-0027
- Abidoye, R. B., & Chan, A. P. (2017). Valuers’ receptiveness to the application of artificial intelligence in property valuation. Pacific Rim Property Research Journal, 175-193. https://doi.org/10.1080/14445921.2017.1299453
- Abidoye, R. B., & Chan, A. P. (2018). Achieving property valuation accuracy in developing countries: The implication of data source. International Journal of Housing Markets and Analysis, 11(3), 573–585. https://doi.org/10.1108/IJHMA-07-2017-0068
- Abidoye, R. B., Junge, M., Lam, T. Y. M., Oyedokun, T. B., & Tipping, M. L. (2019). Property valuation methods in practice: evidence from Australia. Property Management, 37(5), 701-718. https://doi.org/10.1108/PM-04-2019-0018
- Abidoye, R., Ma, J., & Lee, C. (2021). Barriers, drivers and prospects of the adoption of artificial intelligence property valuation methods in practice. Pacific Rim Property Research Journal, 27(2), 89–106. https://doi.org/10.1080/14445921.2021.2001724
- Abiojola, M., & Oletobo, A. (2011). Assessment of Accuracy of Valuation. Global Journal of Engineering and Technology, 4(1), 45–51. https://eprints.covenantuniversity.edu.ng/3703/1/Ajibola%20and%20Oletubo.pdf
- Addae-Dapaah, K. (2001). Valuation accuracy - A problematic enquiry. European Real Estate Society, 1-12. Retrieved March 19, 2025, from https://eres.architexturez.net/system/files/pdf/eres2001_101.content.pdf
- Adegoke, O. J. (2016). Effects of valuation variance and inaccuracy on Nigerian commercial property market: An empirical study. Journal of Property Investment & Finance, 34(3), 276–292. https://doi.org/10.1108/JPIF-08-2014-0056
- Adilieme, C. M., Abidoye, R. B., & Lee, C. L. (2024). Blockchain in property valuation: perspectives of property professionals in Nigeria. 30th Annual Pacific Rim Real Estate Society Conference (pp. 62-72). Gold Coast, Australia: Pacific Real Estate Society. https://doi.org/10.26190/unsworks/30358
- Adilieme, C. M., Abidoye, R. B., & Lee, C. L. (2025). Barriers and prospects for the adoption of blockchain technology in property valuation. Journal of European Real Estate Research, 18(1), 84–104. https://doi.org/10.1108/JERER-04-2024-0022
- Ajibola, M. (2010). Valuation inaccuracy: An examination of causes in Lagos Metropolis. Journal of Sustainable Development, 3(4), 186–193. https://doi.org/10.5539/jsd.v3n4p187
- Ajibola, M. O., & Oletubo, A. A. (2011). Assessment of accuracy of valuation in the property market in Lagos Metropolis. Global Journal of Engineering & Technology, 4(1), 45-51. doi: https://eprints.covenantuniversity.edu.ng/3703/1/Ajibola%20and%20Oletubo.pdf
- Aluko, B. T., Ajayl, C. A., & Amidu, A. R. (2004). The estate surveyors and valuers and the magic number: A point estimate or range of value. International Journal of Strategic Property Management, 8(3), 149–162. https://doi.org/10.3846/1648715X.2004.9637514
- Ashaolu, T. A., & Bello, M. O. (2022). Acquired body of knowledge: A core valuation influencing factor in inter-valuer variance. Journal of African Real Estate Research, 7(1), 1–17. https://doi.org/10.15641/jarer.v7i1.1115
- Atilola, M. I., Ismail, M. A., Achu, K., & Bujang, A. A. (2019). An evaluation of factors causing variance in property assessment. Journal of the Malaysian Institute of Planners, 17(9), 82–93. https://doi.org/10.21837/pmjournal.v17.i9.588
- Babawale, G. K. (2013). Designing appropriate valuation models for sustainable property tax systems in developing countries. International Journal of Law and Management, 55(3), 226–246. https://doi.org/10.1108/17542431311327646
- Babawale, G. K. (2013). Valuation accuracy – the myth, expectation and reality. African Journal of Economic and Management Studies, 4(3), 387–406. https://doi.org/10.1108/AJEMS-11-2011-0106
- Baffor-Awuah, K. G., & Gyamfi-Yeboah, F. (2017). The role of task complexity in valuation errors analysis in a developing real estate market. Journal of Property Research, 34(1), 54–76. https://doi.org/10.1080/09599916.2017.1315444
- Bellman, L. (2022). In the mind of the property appraiser: Studies of the property valuation. Mid Sweden University, Department of Economics, Geography, Law and Tourism. Faculty of Human Science. Retrieved February 24, 2025, from https://www.divaportal.org/smash/get/diva2:1625578/FULLTEXT02.pdf
- Bidanset, P. E., & Rakow, R. (2022). Survey on the use of Automated Valuation Models (AVMs) in government assessment offices: An analysis of AVM use, acceptance and barriers to more widespread implementation. Journal of Property Tax Assessment & Administration, 19(2), 1–28. https://doi.org/10.63642/1357-1419.1250
- Boshoff, D., & De Kock, L. (2013). Investigating the use of Automated Valuation Models (AVMs) in the South African commercial property market. Acta Structilia, 20(1), 1–21. https://doi.org/10.38140/as.v20i1.131
- Chan, A. P., & Abidoye, R. B. (2019). Advanced property valuation techniques and valuation accuracy: Deciphering the artificial neural network technique. International Journal of Real Estate & Land Planning, 2, 1-9. https://doi.org/10.26262/reland.v2i0.6748
- Chaphalkar, N., & Sandbhor, S. (2018). Use of artificial intelligence in real property valuation. [IJET]. IACSIT International Journal of Engineering and Technology, 5(3), 2334–2337. Retrieved January 21, 2025, from https://www.enggjournals.com/ijet/docs/IJET13-05-03-087.pdf
- Cheloti, I., & Mooya, M. (2021). Valuation problems in developing countries: A new perspective. Land (Basel), 10(12), 1352. https://doi.org/10.3390/land10121352
- Crosby, N. (2000). Valuation accuracy, variation and bias in the context of standards and expectations. Journal of Property Investment & Finance, 18(2), 130–161. https://doi.org/10.1108/14635780010324240
- Demetriou, D. (2016). The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework. Land use policy, 54, 487-498. Land Use Policy, 54, 487–498. https://doi.org/10.1016/j.landusepol.2016.03.008
- Droj, G., Kwartnik-Pruc, A., & Droj, L. (2024). A comprehensive overview regarding the impact of GIS on property valuation. ISPRS International Journal of Geo-Information, 13(6), 175. https://doi.org/10.3390/ijgi13060175
- Dube, C. (2012). Unscrupulous house valuers put BBS at risk. Mmegi newspaper. Retrieved April 05, 2025, from https://www.mmegi.bw/business/unscrupulous-house-valuersput-bbs-at-risk/news
- Effiong, B. J. (2015). A comparative study of valuation variance and accuracy between Nigeria and the UK. Journal of International Letters of Social and Humanistic Sciences, 57, 94–105. https://doi.org/10.18052/www.scipress.com/ILSHS.57.94
- Evans, K.M., Lausberg, C., & Sui Sang How, J. (2019). Reducing property appraisal bias with decision support systems: An experimental investigation in the South African property market., 4(1), 108-138. Journal of African Real Estate Research, 4(1), 108–138. https://doi.org/10.15641/jarer.v4i1.729
- Gambo, Y. L., & Anyakora, M. I. (2013). Margin of valuation error among Nigerian valuers: postulating an acceptable limit. ATBU Journal of Environmental Technology, 6(1), 54-65.
- Garcia-Teruel, R. M. (2020). Legal challenges and opportunities of blockchain technology in the real estate sector. Journal of Property. Planning and Environmental Law, 12(2), 129–145. https://doi.org/10.1108/JPPEL-07-2019-0039
- Gatheru, S. W., & Nyika, D. (2015). Application of Geographic Information System in property valuation. International Journal of Scientific & Technology Research, 4(8), 61–72. Retrieved April 20, 2025, from https://www.ijstr.org/finalprint/aug2015/Application-Of-Geographic-Information-System-In-Property-Valuation.pdf
- Glumac, B., & Des Rosiers, F. (2018). Real estate and land property automated valuation systems: A taxonomy and conceptual model. University of Canada. Luxembourg: Liser: Luxembourg Institute of Socio-economic Research. Retrieved April 17, 2025, from https://liser.elsevierpure.com/ws/portalfiles/portal/11504827/WP_N_2018_09.pdf https://doi.org/10.15396/eres2018_148
- Glumac, B., & Des Rosiers, F. (2021). Towards a taxonomy for real estate and land automated valuation systems. Journal of Property Investment & Finance, 39(5), 450-463. https://doi.org/10.1108/JPIF-07-2020-0087
- Greer, T. H., & Murtaza, M. B. (2020). Technologies to improve the decision-making process of real estate appraisers: XML, Intelligent Agent, AVMs and Web Services. Journal of Business & Economics Research, 1(6), 63–72. https://doi.org/10.19030/jber.v1i6.3023
- Grybauskas, A., Pilinkienė, V., & Stundžienė, A. (2021). Predictive analytics using Big Data for the real estate market during the COVID-19 pandemic. Journal of Big Data, 8(1), 1-20. https://doi.org/10.1186/s40537-021-00476-0 PMID:34367876
- Hoxha, V., & Sadiku, S. (2019). Study of factors influencing the decision to adopt the blockchain technology in real estate transactions in Kosovo. Property Management, 37(5), 684–700. https://doi.org/10.1108/PM-01-2019-0002
- Ibrahim, I., Daud, D., Sa’ad, U. B., Yaro, H. U., Isamil, W. I., & Nor, N. M. (2023). Application of Computer Assisted Mass Appraisal (CAMA) in Real Estate Profession in Nigeria: A review of valuation modern techniques. International Conference of Built Environment & Suyveying. Universiti Teknologi Malaysia., Retrieved from https://www.researchgate.net/profile/Isyaku-Ibrahim/publication/389561660_application_of_computer_assisted_mass_appraisal_cama_in_real_estate_profession_in_nigeria_a_review_of_valuation_modern_techniques/links/67d7cf1a478c5a3feda360d0/application-of-compu
- IVSC. (2022). International Valuation Standards. Retrieved from https://viewpoint.pwc.com/dt/gx/en/ivsc/international_valuat/assets/IVS-effective-31-Jan-2022.pdf
- Jahanshiri, E., Buyong, T., & Mohd, A. R. (2011). A review of property valuation models. Journal of Science and Technology, 19(5), 23–30. Retrieved March 19, 2025, from https://core.ac.uk/download/pdf/153802057.pdf
- Kampamba, J. (2020). An evaluation of rating valuation practice and administration in Gaborone, Botswana: The development of a cost effective automated valuation model (AVM). University of Botswana, Department of Architecture and Planning. Gaborone: University of Botswana. Retrieved August 2024, 13, from file:///C:/Users/user/Downloads/DAPConferenceProceedings20 212%20(9).pdf
- Kampamba, J., & Ratlou, M. M. (2021). An assessment of factors that lead to the non-application of GIS infused automatic valuation models in property valuation in Gaborone. African Real Estate Society (AFRES), 201-220. Retrieved April 06, 2025, from https://afres.architexturez.net/doc/oai-afres-id-2021-030
- Kampamba, J., Mosesane, T., & Emoh, F. I. (2022). An assessment of factors leading to slow adoption of property technology in the real estate profession in Gaborone. DAP Virtual Conference 2021 (pp. 200-219). Gaborone: Department of Architecture and Planning, University of Botswana.
- Kang, Y., Zhang, F., Peng, W., Gao, S., Rao, J., Duarte, F., & Ratti, C. (2021). Understanding house price appreciation using multisource big geo-data and machine learning. Land Use Policy, 111, 104919. https://doi.org/10.1016/j.landusepol.2020.104919
- Kayode Babawale, G. K., & Omirin, M. (2012). An assessment of the relative impact of factors influencing inaccuracy in valuation. International Journal of Housing Markets and Analysis, 5(2), 145–160. https://doi.org/10.1108/17538271211225904
- Kok, N., Koponen, E., & Martinez-Barbosa, C. A. (2017). Big data in real estate? From manual appraisal to automated valuation. Journal of Portfolio Management, 43(6), 202–211. https://doi.org/10.3905/jpm.2017.43.6.202
- Liu, N., Duncan, R., & Chapman, A. (2020). A critical review of distributed ledger technology and its applications in real estate. Royal Institution of Chartered Surveyors. doi:https:/www.rics.org/globalassets/rcswebsite/media/knowledge/research-reports/rics0077-001-distributed-ledger-technology-submittedforpublicationreport-final.pdf
- Liu, X., Deng, Z., & Wang, T. (2011). Real estate appraisal system based on GIS and BP neural network. Transactions of Nonferrous Metals Society of China, 21(3), s626–s630. https://doi.org/10.1016/S1003-6326(12)61652-5
- Luca Rampini, Fulvio Re Cecconi; Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment & Finance 28 September 2022; 40 (6): 588–611. https://doi.org/10.1108/JPIF-08-2021-0073
- Mengwe, D. (2013). Valuations for secured lending and lenders’ perspectives in Botswana. Valuation Edge. Boidus Focus, 8-10. Retrieved February 19, 2025, from https://www.biv.org.bw/assets/attachments/valuation_edge1.pdf
- Metzner, N., & Kindt, A. (2018). Determination of the parameters of automated valuation models for the hedonic property valuation of residential properties: A literature-based approach. International Journal of Housing Markets and Analysis, 11(1), 73–100. https://doi.org/10.1108/IJHMA-02-2017-0018
- Mohammad, N. E., Mohd Ali, H. M., & Jasimin, T. H. (2018). Valuer’s behavioural uncertainties in property valuation decision making. Planning Malaysia, 16(1), 239–250. https://doi.org/10.21837/pmjournal.v16.i5.428
- Moore, J. W., & Myers, J. (2010). Using geographic-attribute weighted regression for CAMA modeling. Journal of Property Tax Assessment & Administration, 7(3), 5–28. https://doi.org/10.63642/1357-1419.1113
- Mosesane, T. T., Kampamba, J., & Emoh, F. (2021). An assessment of the factors leading to slow adoption of property technology in the real estate profession in Gaborone. DAP Virtual Conference - Towards Achieving Sustainable Development Goals (SDGS) (pp. 200-218). Gaborone: Department of Architecture and Planning. Retrieved January 12, 2025, from file:///C:/Users/user/Downloads/DAPConferenceProceedings20 212%20(9).pdf
- Munshifwa, E. K. (2021). An investigation into the use of “hybrid” adjustment techniques in the application of the sales comparison method in residential valuation. Real Estate Management and Valuation, 29(1), 1–11. https://doi.org/10.2478/remav-2021-0001
- Munshifwa, E. K., Jain, N., Kaunda, B. S., Masiba, L., Lungu, J., Chunda-Mwango, N., Mushinge, A., & Ngoma, W. (2016). Variances in rateable values in Rating Practice in Zambia: The role of mental models in value assessment. Pacific Rim Property Research Journal, 22(2), 181–201. https://doi.org/10.1080/14445921.2016.1225151
- Muzahem Alsahan, I., & Ibraheem AlZaidan, Z. (2024). Unleashing the power of artificial intelligence in real estate valuation: Opportunities and challenges ahead. Journal of Knowledge Learning and Science Technology, 3(2), 1–10. https://doi.org/10.60087/jklst.vol3.n2.p10
- Naeem, N., Rana, I. A., & Nasir, A. R. (2023). Digital real estate: A review of the technologies and tools transforming the industry and society. Smart Construction and Sustainable Cities, 1, 15. https://doi.org/10.1007/s44268-023-00016-0
- Namangale, D., & Chimalizeni, E. (2022). Adoption of Automated Valuation Models in Malawi; Valuers’ perception. Journal of African Real Estate Research, 6(2), 51–61. https://doi.org/10.15641/jarer.v6i2.1008
- Narayan, S. A., & Biswas, S. S. (2020). Opportunities and challenges of implementing the international valuation standards in Fiji. The Journal of Pacific Studies, 40(1), 51–80. https://doi.org/10.33318/jpacs.2020.40(1)-3
- Narayan, S., Biswas, S., & Sahib, L. (2017). Issues facing standardization of property valuation practices: A case study of Suva, Fiji. World Bank Conference on Land and Poverty. March 20-24, pp. 12-26. Washington DC: World Bank Conference. doi:chromeextension:// efaidnbmnnnibpcajpcglclefindmkaj/https://d1wqtxts1xzle7.cloudfront.net/78649345/Narayan_Issues_Facing_Standardisation_of_Property_Valuationlibre.pdf?1642133685=&response-contentdisposition=inline%3B+filename%3DIssues_facing_standardis
- Oduyemi, O., Okoroh, M., & Fajana, O. (2016). Property valuation inaccuracy in commercial office buildings: Establishing the key causative factors. International Journal of Real Estate Studies, 10(1), 1-11. Available at SSRN: https://ssrn.com/abstract=2810219
- Oduyemi, O., Okoroh, M., & Oluwaseun, F. (2016). Property valuation inaccuracy in commercial office buildings: Establishing the key causative factors. International Journal of Real Estate Studies, 10(1), 34-43. https://ssrn.com/abstract=2810219
- Oladokun, S. O., & Mooya, M. M. (2024). Another look at data challenges in property valuation practice: A case of Lagos property market. Journal of Property Investment & Finance, 42(4), 325–347. https://doi.org/10.1108/JPIF-07-2023-0069
- Onwuanyi, N. (2020). A review of property data challenges in Nigeria. Journal of African Real Estate Research, 5(2), 15–40. https://doi.org/10.15641/jarer.v5i2.842
- Pickett, J. T., Cullen, F. T., Bushway, S. D., Chiricos, T., & Alepert, G. (2018). The response rate test: nonresponse bias and the future of survey research in criminology and criminal justice. The Criminologist, 43(1), 7-11. Retrieved from https://ssrn.com/abstract=3103018
- Rampini, L., & Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment & Finance, 40(6), 588–611. https://doi.org/10.1108/JPIF-08-2021-0073
- Reddy, G.P.O. (2018). Geographic Information System: Principles and applications. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_3
- Renigier-Biłozor, M., Zrobek, S., & Walacik, M. (2022). Modern technologies in the real estate market - Opponents vs proponents of their use: Does new category of value solve the problem? Sustainability (Basel), 14(20), 13403. https://doi.org/10.3390/su142013403
- Root, T. H., Strader, T. J., & Huang, Y. J. (2023). A review of machine learning approaches for real estate valuation. Journal of the Midwest Association for Information Systems, 2(2), 9-28. https://jmwais.org/wpcontent/uploads/sites/8/2023/07/V2023.I2.A2.pdf
- Teang, K., & Lu, Y. (2021). Property valuations by machine learning and hedonic pricing models: A case study. MSc Thesis, KTH Royal Institution of Technology, Department of Real Estate and Construction Management, School of Architecture and the Built Environment. doi:https://www.divaportal.org/smash/get/diva2:1576509/FULLTEXT01.pdf
- Ullah, F., Sepasgozar, S. M. E., & Wang, C. (2018). A systematic review of smart real estate technology: Drivers of, and barrier to the use of digital disruptive technologies and online platforms. Sustainability (Basel), 10(9), 3142–3150. https://doi.org/10.3390/su10093142
- Wang, D., & Li, V. J. (2019). Mass appraisal models of real estate in the 21st century: A systematic literature review. Sustainability (Basel), 11(24), 7006–7012. https://doi.org/10.3390/su11247006
- Waters, M. J. (2019). A critical examination of property valuation variance in Dubai. Herriot-Watt University, School of Energy, Geoscience, Infrastructure and Society. The Urban Institute. doi: http://hdl.handle.net/10399/4200
- Wouda, H. P., & Opdenakker, R. (2019). Blockchain technology in commercial real estate transactions. Journal of Property Investment & Finance, 37(6), 570–579. https://doi.org/10.1108/JPIF-06-2019-0085
- Yakub, A. A., Mohd. Ali, H., Achu, K., Abdul Jalil, R., & Salawu, A. O. (2021). An integrated approach on Artificial Intelligence (AI) using ANFIS and ANN for multiple criteria real estate price prediction. Journal of the Malaysian Institute of Planners, 19(3), 270–282. https://doi.org/10.21837/pm.v19i17.1005
- Zhou, L., Shi, L., & Zhang, S. (2015). Database construction of real estate assessment based on big data. 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (pp. 92-96). Tokyo, Japan: Atlantis Press. https://doi.org/10.2991/iccmcee-15.2015.19