Angrist, J. D., & Pischke, J. S. (2010). The credibility revolution in empirical economics: How better research design is taking the con out of econometrics. The Journal of Economic Perspectives, 24(2), 3–30. https://doi.org/10.1257/jep.24.2.3
Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of Random Forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772–1778. https://doi.org/10.1016/j.eswa.2011.08.077
Arribas, I., García, F., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2016). Mass appraisal of residential real estate using multilevel modelling. International Journal of Strategic Property Management, 20(1), 77–87. https://doi.org/10.3846/1648715X.2015.1134702
Basu, S., & Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in house prices. The Journal of Real Estate Finance and Economics, 17, 61–85. https://doi.org/10.1023/A:1007703229507
Borgoni, R., Michelangeli, A., & Pontarollo, N. (2018). The value of culture to urban housing markets. Regional Studies, 52(12), 1672–1683. https://doi.org/10.1080/00343404.2018.1444271
Cellmer, R. (2013). Use of spatial autocorrelation to build regression models of transaction prices. Real Estate Management and Valuation, 21(4), 65–74. https://doi.org/10.2478/remav-2013-0038
Deppner, J., & Cajias, M. (2022). Accounting for spatial autocorrelation in algorithm-driven hedonic models: A spatial cross-validation approach. The Journal of Real Estate Finance and Economics, 68, 235–273. https://doi.org/10.1007/s11146-022-09915-y
Deppner, J., von Ahlefeldt-Dehn, B., Beracha, E., & Schaefers, W. (2023). Boosting the accuracy of commercial real estate appraisals: An interpretable machine learning approach. The Journal of Real Estate Finance and Economics, 1–38. https://doi.org/10.1007/s11146-023-09944-1 PMID:38625136
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
Gilliland, M. (ed.). (2010). The Business forecasting deal: exposing myths, eliminating bad practices, providing practical solutions. John Wiley & Sons., https://doi.org/10.1002/9781119199885
Holzinger, A., Saranti, A., Molnar, C., Biecek, P., & Samek, W. (2022). Explainable AI methods – A brief overview. In A. Holzinger, R. Goebel, R. Fond, T. Moon, K. R. Müller, & W. Samek (Eds.), xxAI – Beyond explainable AI (pp. 13–38). Springer., https://doi.org/10.1007/978-3-031-04083-2_2
Hong, J., Choi, H., & Kim, W. S. (2020). A house price valuation based on the random forest approach: The mass appraisal of residential property in South Korea. International Journal of Strategic Property Management, 24(3), 140–152. https://doi.org/10.3846/ijspm.2020.11544
Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., & Cai, Z. (2019). Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 82, 657–673. https://doi.org/10.1016/j.landusepol.2018.12.030
Kauko, T. (2006). What makes a location attractive for the housing consumer? Preliminary findings from metropolitan Helsinki and Randstad Holland using the analytical hierarchy process. Journal of Housing and the Built Environment, 21, 159–176. https://doi.org/10.1007/s10901-006-9040-y
Kok, N., Koponen, E. L., & Martínez-Barbosa, C. A. (2017). Big data in real estate? From manual appraisal to automated valuation. Journal of Portfolio Management, 43(6), 202–211. https://doi.org/10.3905/jpm.2017.43.6.202
Li, Z. (2022). Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 96, 101845. https://doi.org/10.1016/j.compenvurbsys.2022.101845
Lorenz, F., Willwersch, J., Cajias, M., & Fuerst, F. (2023). Interpretable machine learning for real estate market analysis. Real Estate Economics, 51(5), 1178–1208. https://doi.org/10.1111/1540-6229.12397
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems, 30. ISBN: 978-1-5108-6096-4.
Mayer, M., Bourassa, S. C., Hoesli, M., & Scognamiglio, D. (2019). Estimation and updating methods for hedonic valuation. Journal of European Real Estate Research, 12(1), 134–150. https://doi.org/10.1108/JERER-08-2018-0035
Montero, J. M., & Fernández-Avilés, G. (2014). Hedonic Price Model. In A. C. Michalos (Ed.), Encyclopedia of quality of life and wellbeing research (pp. 2834–2837). Springer., https://doi.org/10.1007/978-94-007-0753-5_1279
Mora-Garcia, R. T., Cespedes-Lopez, M. F., & Perez-Sanchez, V. R. (2022). Housing price prediction using machine learning algorithms in COVID-19 times. Land (Basel), 11(11), 2100. https://doi.org/10.3390/land11112100
NBP. (2022). Raport o sytuacji na rynku nieruchomości mieszkaniowych i komercyjnych w Polsce w 2021 r. [Report on the situation in the residential and commercial real estate market in Poland in 2021].
Osland, L. (2010). An application of spatial econometrics in relation to hedonic house price modeling. Journal of Real Estate Research, 32(3), 289–320. https://doi.org/10.1080/10835547.2010.12091282
Pace, R. K., & Hayunga, D. (2020). Examining the information content of residuals from hedonic and spatial models using trees and forests. The Journal of Real Estate Finance and Economics, 60, 170–180. https://doi.org/10.1007/s11146-019-09724-w
Przekop, D. (2022). Artificial neural networks vs spatial regression approach in property valuation. Central European Journal of Economic Modelling and Econometrics, 14, 199–223. https://doi.org/10.24425/cejeme.2022.142630
Rico-Juan, J. R., & Taltavull de La Paz, P. T. (2021). Machine learning with explainability or spatial hedonics tools? An analysis of the asking prices in the housing market in Alicante, Spain. Expert Systems with Applications, 171, 114590. https://doi.org/10.1016/j.eswa.2021.114590
Rosen, S. (1974). Hedonic Prices and implicit markets: Product differentiation in pure competition. Journal of Political Economy, 82(1), 34–55. https://doi.org/10.1086/260169
Saha, A., Basu, S., & Datta, A. (2023). Random forests for spatially dependent data. Journal of the American Statistical Association, 118(541), 665–683. https://doi.org/10.1080/01621459.2021.1950003
Sevgen, S. C., & Tanrivermiş, Y. (2024). Comparison of machine learning algorithms for mass appraisal of real estate data. Real Estate Management and Valuation, 32(2), 100–111. https://doi.org/10.2478/remav-2024-0019
Shapley, L. (1953). 17. A Value for n-Person Games. In H. Kuhn & A. Tucker (Eds.), Contributions to the theory of games (Vol. AM-28, pp. 307–318). Princeton University Press., https://doi.org/10.1515/9781400881970-018
Steurer, M., Hill, R. J., & Pfeifer, N. (2021). Metrics for evaluating the performance of machine learning based automated valuation models. Journal of Property Research, 38(2), 99–129. https://doi.org/10.1080/09599916.2020.1858937
Straszhem, M. (1987). The theory of urban residential location. In Handbook of Regional and Urban Economics (Vol. 2, pp. 717–757). Elsevier., https://doi.org/10.1016/S1574-0080(87)80004-4
Talebi, H., Peeters, L. J., Otto, A., & Tolosana-Delgado, R. (2022). A truly spatial random forests algorithm for geoscience data analysis and modelling. Mathematical Geosciences, 54, 1–22. https://doi.org/10.1007/s11004-021-09946-w
Wheaton, W. C. (1977). Income and urban residence: An analysis of consumer demand for location. The American Economic Review, 67(4), 620–631. https://www.jstor.org/stable/1813394
Wu, Y., Wei, Y. D., & Li, H. (2020). Analyzing spatial heterogeneity of housing prices using large datasets. Applied Spatial Analysis and Policy, 13, 223–256. https://doi.org/10.1007/s12061-019-09301-x
Yoshida, T., Murakami, D., & Seya, H. (2024). Spatial prediction of apartment rent using regression-based and machine learningbased approaches with a large dataset. The Journal of Real Estate Finance and Economics, 69, 1–28. https://doi.org/10.1007/s11146-022-09929-6
Zyga, J. (2019). Data selection as the basis for better value modelling. Real Estate Management and Valuation, 27(1), 25–34. https://doi.org/10.2478/remav-2019-0003