Have a personal or library account? Click to login
Comparison of Machine Learning Algorithms for Mass Appraisal of Real Estate Data Cover

Comparison of Machine Learning Algorithms for Mass Appraisal of Real Estate Data

Open Access
|Feb 2024

References

  1. Atasoy, T., & Tanrıvermiş, H. (2024). Gayrimenkul Türevleri, Gayrimenkul Türev Fiyatlandırma Modelleri Ve Türkiye’de Bir Uygulama (Real Estate Derivatives, Real Estate Derivative Pricing Models and an Application in Turkey). The Journal of Academic Social Science Studies, 16 (98), 461-494.
  2. Bilgilioğlu, S. S., & Yılmaz, H. M. (2023). Comparison of different machine learning models for mass appraisal of real estate. Survey Review, 55(388), 32–43. https://doi.org/10.1080/00396265.2021.1996799
  3. Borst, R. A. (1991). Artificial neural networks: The next modelling/calibration technology for the assessment community. Property Tax Journal, 10(1), 69–94.
  4. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655
  5. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  6. Breiman, L., & Cutler, A. (2005). Random Forests. Berkeley. In. Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the performance of random forest versus multiple regression for predicting prices of the apartments. ISPRS International Journal of Geo-Information, 7(5), 168. https://doi.org/10.3390/ijgi7050168
  7. Chen, H., Zhang, Z., Yin, W., Zhao, C., Wang, F., & Li, Y. (2022). A study on depth classification of defects by machine learning based on hyper-parameter search. Measurement, 189, 110660. https://doi.org/10.1016/j.measurement.2021.110660
  8. Dambon, J. A., Fahrländer, S. S., Karlen, S., Lehner, M., Schlesinger, J., Sigrist, F., & Zimmermann, A. (2022). Examining the vintage effect in hedonic pricing using spatially varying coefficients models: A case study of single-family houses in the Canton of Zurich. Swiss Journal of Economics and Statistics, 158(1), 2. https://doi.org/10.1186/s41937-021-00080-2
  9. Dellstad, M. (2018). Comparing three machine learning algorithms in the task of appraising commercial real estate. Degree project in computer science and engineering. Stockholm, Sweden.
  10. Gnat, S. (2021). Property mass valuation on small markets. Land (Basel), 10(4), 388. https://doi.org/10.3390/land10040388
  11. Gültekin, A., Dikmen, Ç., Erciyes, A., & Örgü, D. (2017). An examination on evolution of sustainability in the context of United Nations Sustainable Development Goals: Turkey case.
  12. Hong, J., Choi, H., & Kim, W. (2020). A house price valuation based on the random forest approach: The mass appraisal of residential property in South Korea. International Journal of Strategic Property Management, 24(3), 140–152. https://doi.org/10.3846/ijspm.2020.11544
  13. Hong, J., & Kim, W. (2022). Combination of machine learning-based automatic valuation models for residential properties in South Korea. International Journal of Strategic Property Management, 26(5), 362–384.
  14. Iban, M. C. (2022). An explainable model for the mass appraisal of residences: The application of tree-based Machine Learning algorithms and interpretation of value determinants. Habitat International, 128, 102660. https://doi.org/10.1016/j.habitatint.2022.102660
  15. Kontrimas, V., & Verikas, A. (2007). Neural networks based screening of real estate transactions. Neural Network World, 17(1), 17.
  16. Kontrimas, V., & Verikas, A. (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11(1), 443–448. https://doi.org/10.1016/j.asoc.2009.12.003
  17. Lam, K. C., Yu, C., & Lam, K. (2008). An artificial neural network and entropy model for residential property price forecasting in Hong Kong. Journal of Property Research, 25(4), 321–342. https://doi.org/10.1080/09599910902837051
  18. Lenk, M. M., Worzala, E. M., & Silva, A. (1997). High-tech valuation: Should artificial neural networks bypass the human valuer? Journal of Property Valuation and Investment, 15, 8-26.
  19. Lerman, P. (1980). Fitting segmented regression models by grid search. Journal of the Royal Statistical Society. Series C, Applied Statistics, 29(1), 77–84.
  20. McCluskey, W. (1996). Predictive accuracy of machine learning models for the mass appraisal of residential property. New Zealand Valuers Journal, 16(1), 41-47.
  21. Morano, P., & Tajani, F. (2013). Bare ownership evaluation. Hedonic price model vs. artificial neural network. International Journal of Business Intelligence and Data Mining, 8(4), 340–362. https://doi.org/10.1504/IJBIDM.2013.059263
  22. Musa, A. G., Daramola, O., Owoloko, A., & Olugbara, O. (2013). A neural-CBR system for real property valuation. Journal of Emerging Trends in Computing and Information Sciences, 4(8), 611–622.
  23. Özkan, G., Yalpır, Ş., & Uygunol, O. (2007). An investigation on the price estimation of residable real-estates by using artificial neural network and regression methods. XIIth Applied Stochastic Models and Data Analysis International conference (ASMDA), Chania, Crete, Greece,
  24. Ravikumar, A. S. (2017). Real estate price prediction using machine learning. Dublin, National College of Ireland.
  25. Sampathkumar, V., Santhi, M. H., & Vanjinathan, J. (2015). Forecasting the land price using statistical and neural network software. Procedia Computer Science, 57, 112–121. https://doi.org/10.1016/j.procs.2015.07.377
  26. Saraç, E. (2012). Yapay sinir ağları metodu ile gayrimenkul değerleme (Real estate valuation with artificial neural networks method) İstanbul Kültür Üniversitesi/Fen Bilimleri Enstitüsü/İnşaat Mühendisliği (Istanbul Kültür University/Institute of Natural and Applied Sciences/Civil Engineering)].
  27. Sawant, R., Jangid, Y., Tiwari, T., Jain, S., & Gupta, A. (2018). Comprehensive analysis of housing price prediction in pune using multi-featured random forest approach. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA),
  28. Selim, H. (2009). Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications, 36(2), 2843–2852.
  29. Sisman, S., Akar, A. U., & Yalpir, S. (2023). The novelty hybrid model development proposal for mass appraisal of real estates in sustainable land management. Survey Review, 55(388), 1–20. https://doi.org/10.1080/00396265.2021.1996797
  30. Tabales, J. M. N., Caridad, J. M., & Carmona, F. J. R. (2013). Artificial neural networks for predicting real estate price. Revista de Métodos Cuantitativos para la Economía y la Empresa, 15, 29–44.
  31. Tay, D.P.H. & Ho, D.K.H. (1992). Artificial intelligence and the mass appraisal of residential apartments. Journal of Property Valuation and Investment, 10(2), 525-540. https://doi.org/10.1108/14635789210031181
  32. Torres-Pruñonosa, J., García-Estévez, P., & Prado-Román, C. (2021). Artificial neural network, quantile and semi-log regression modelling of mass appraisal in housing. Mathematics, 9(7), 783. https://doi.org/10.3390/math9070783
  33. Tursun, A. (2023). Gayrimenkul Pazar Analizinde Sistem Dinamiği Yaklaşımı ve Uygulaması (System Dynamics Approach and Application in Real Estate Market Analysis). Nobel.
  34. Unel, F. B., & Yalpir, S. (2023). Sustainable tax system design for use of mass real estate appraisal in land management. Land Use Policy, 131, 106734. https://doi.org/10.1016/j.landusepol.2023.106734
  35. Valier, A. (2020). Who performs better? AVMs vs hedonic models. Journal of Property Investment & Finance, 38(3), 213–225. https://doi.org/10.1108/JPIF-12-2019-0157
  36. Vapnik, V. (1998). Statistical learning theory New York. NY, Wiley.
  37. Varma, A., Sarma, A., Doshi, S., & Nair, R. (2018). House price prediction using machine learning and neural networks. 2018 second international conference on inventive communication and computational technologies (ICICCT).
  38. Wilson, I. D., Paris, S. D., Ware, J. A., & Jenkins, D. H. (2002). Residential property price time series forecasting with neural networks. In Applications and Innovations in Intelligent Systems IX (pp. 17-28). Springer.
  39. Worzala, E., Lenk, M., & Silva, A. (1995). An exploration of neural networks and its application to real estate valuation. Journal of Real Estate Research, 10(2), 185–201. https://doi.org/10.1080/10835547.1995.12090782
  40. Xin, J. G., & Runeson, G. (2004). Modeling property prices using neural network model for Hong Kong. International Real Estate Review, 7(1), 121–138.
  41. Yılmaz, M., & Bostancı, B. (2023). Investigation of Real Estate Tax Leakage Loss Rates with ANNs. Buildings, 13(10), 2464. https://doi.org/10.3390/buildings13102464
  42. Yu, H., & Wu, J. (2016). Real estate price prediction with regression and classification. CS229 (Machine Learning). Final Project Reports.
Language: English
Page range: 100 - 111
Submitted on: Sep 19, 2023
Accepted on: Feb 16, 2024
Published on: Feb 20, 2024
Published by: Real Estate Management and Valuation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sibel Canaz Sevgen, Yeşim Tanrivermiş, published by Real Estate Management and Valuation
This work is licensed under the Creative Commons Attribution 4.0 License.