References
- Atasoy, T., & Tanrıvermiş, H. (2024). Gayrimenkul Türevleri, Gayrimenkul Türev Fiyatlandırma Modelleri Ve Türkiye’de Bir Uygulama (Real Estate Derivatives, Real Estate Derivative Pricing Models and an Application in Turkey). The Journal of Academic Social Science Studies, 16 (98), 461-494.
- Bilgilioğlu, S. S., & Yılmaz, H. M. (2023). Comparison of different machine learning models for mass appraisal of real estate. Survey Review, 55(388), 32–43. https://doi.org/10.1080/00396265.2021.1996799
- Borst, R. A. (1991). Artificial neural networks: The next modelling/calibration technology for the assessment community. Property Tax Journal, 10(1), 69–94.
- Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
- Breiman, L., & Cutler, A. (2005). Random Forests. Berkeley. In. Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the performance of random forest versus multiple regression for predicting prices of the apartments. ISPRS International Journal of Geo-Information, 7(5), 168. https://doi.org/10.3390/ijgi7050168
- Chen, H., Zhang, Z., Yin, W., Zhao, C., Wang, F., & Li, Y. (2022). A study on depth classification of defects by machine learning based on hyper-parameter search. Measurement, 189, 110660. https://doi.org/10.1016/j.measurement.2021.110660
- Dambon, J. A., Fahrländer, S. S., Karlen, S., Lehner, M., Schlesinger, J., Sigrist, F., & Zimmermann, A. (2022). Examining the vintage effect in hedonic pricing using spatially varying coefficients models: A case study of single-family houses in the Canton of Zurich. Swiss Journal of Economics and Statistics, 158(1), 2. https://doi.org/10.1186/s41937-021-00080-2
- Dellstad, M. (2018). Comparing three machine learning algorithms in the task of appraising commercial real estate. Degree project in computer science and engineering. Stockholm, Sweden.
- Gnat, S. (2021). Property mass valuation on small markets. Land (Basel), 10(4), 388. https://doi.org/10.3390/land10040388
- Gültekin, A., Dikmen, Ç., Erciyes, A., & Örgü, D. (2017). An examination on evolution of sustainability in the context of United Nations Sustainable Development Goals: Turkey case.
- Hong, J., Choi, H., & Kim, W. (2020). A house price valuation based on the random forest approach: The mass appraisal of residential property in South Korea. International Journal of Strategic Property Management, 24(3), 140–152. https://doi.org/10.3846/ijspm.2020.11544
- Hong, J., & Kim, W. (2022). Combination of machine learning-based automatic valuation models for residential properties in South Korea. International Journal of Strategic Property Management, 26(5), 362–384.
- Iban, M. C. (2022). An explainable model for the mass appraisal of residences: The application of tree-based Machine Learning algorithms and interpretation of value determinants. Habitat International, 128, 102660. https://doi.org/10.1016/j.habitatint.2022.102660
- Kontrimas, V., & Verikas, A. (2007). Neural networks based screening of real estate transactions. Neural Network World, 17(1), 17.
- Kontrimas, V., & Verikas, A. (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11(1), 443–448. https://doi.org/10.1016/j.asoc.2009.12.003
- Lam, K. C., Yu, C., & Lam, K. (2008). An artificial neural network and entropy model for residential property price forecasting in Hong Kong. Journal of Property Research, 25(4), 321–342. https://doi.org/10.1080/09599910902837051
- Lenk, M. M., Worzala, E. M., & Silva, A. (1997). High-tech valuation: Should artificial neural networks bypass the human valuer? Journal of Property Valuation and Investment, 15, 8-26.
- Lerman, P. (1980). Fitting segmented regression models by grid search. Journal of the Royal Statistical Society. Series C, Applied Statistics, 29(1), 77–84.
- McCluskey, W. (1996). Predictive accuracy of machine learning models for the mass appraisal of residential property. New Zealand Valuers Journal, 16(1), 41-47.
- Morano, P., & Tajani, F. (2013). Bare ownership evaluation. Hedonic price model vs. artificial neural network. International Journal of Business Intelligence and Data Mining, 8(4), 340–362. https://doi.org/10.1504/IJBIDM.2013.059263
- Musa, A. G., Daramola, O., Owoloko, A., & Olugbara, O. (2013). A neural-CBR system for real property valuation. Journal of Emerging Trends in Computing and Information Sciences, 4(8), 611–622.
- Özkan, G., Yalpır, Ş., & Uygunol, O. (2007). An investigation on the price estimation of residable real-estates by using artificial neural network and regression methods. XIIth Applied Stochastic Models and Data Analysis International conference (ASMDA), Chania, Crete, Greece,
- Ravikumar, A. S. (2017). Real estate price prediction using machine learning. Dublin, National College of Ireland.
- Sampathkumar, V., Santhi, M. H., & Vanjinathan, J. (2015). Forecasting the land price using statistical and neural network software. Procedia Computer Science, 57, 112–121. https://doi.org/10.1016/j.procs.2015.07.377
- Saraç, E. (2012). Yapay sinir ağları metodu ile gayrimenkul değerleme (Real estate valuation with artificial neural networks method) İstanbul Kültür Üniversitesi/Fen Bilimleri Enstitüsü/İnşaat Mühendisliği (Istanbul Kültür University/Institute of Natural and Applied Sciences/Civil Engineering)].
- Sawant, R., Jangid, Y., Tiwari, T., Jain, S., & Gupta, A. (2018). Comprehensive analysis of housing price prediction in pune using multi-featured random forest approach. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA),
- Selim, H. (2009). Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications, 36(2), 2843–2852.
- Sisman, S., Akar, A. U., & Yalpir, S. (2023). The novelty hybrid model development proposal for mass appraisal of real estates in sustainable land management. Survey Review, 55(388), 1–20. https://doi.org/10.1080/00396265.2021.1996797
- Tabales, J. M. N., Caridad, J. M., & Carmona, F. J. R. (2013). Artificial neural networks for predicting real estate price. Revista de Métodos Cuantitativos para la Economía y la Empresa, 15, 29–44.
- Tay, D.P.H. & Ho, D.K.H. (1992). Artificial intelligence and the mass appraisal of residential apartments. Journal of Property Valuation and Investment, 10(2), 525-540. https://doi.org/10.1108/14635789210031181
- Torres-Pruñonosa, J., García-Estévez, P., & Prado-Román, C. (2021). Artificial neural network, quantile and semi-log regression modelling of mass appraisal in housing. Mathematics, 9(7), 783. https://doi.org/10.3390/math9070783
- Tursun, A. (2023). Gayrimenkul Pazar Analizinde Sistem Dinamiği Yaklaşımı ve Uygulaması (System Dynamics Approach and Application in Real Estate Market Analysis). Nobel.
- Unel, F. B., & Yalpir, S. (2023). Sustainable tax system design for use of mass real estate appraisal in land management. Land Use Policy, 131, 106734. https://doi.org/10.1016/j.landusepol.2023.106734
- Valier, A. (2020). Who performs better? AVMs vs hedonic models. Journal of Property Investment & Finance, 38(3), 213–225. https://doi.org/10.1108/JPIF-12-2019-0157
- Vapnik, V. (1998). Statistical learning theory New York. NY, Wiley.
- Varma, A., Sarma, A., Doshi, S., & Nair, R. (2018). House price prediction using machine learning and neural networks. 2018 second international conference on inventive communication and computational technologies (ICICCT).
- Wilson, I. D., Paris, S. D., Ware, J. A., & Jenkins, D. H. (2002). Residential property price time series forecasting with neural networks. In Applications and Innovations in Intelligent Systems IX (pp. 17-28). Springer.
- Worzala, E., Lenk, M., & Silva, A. (1995). An exploration of neural networks and its application to real estate valuation. Journal of Real Estate Research, 10(2), 185–201. https://doi.org/10.1080/10835547.1995.12090782
- Xin, J. G., & Runeson, G. (2004). Modeling property prices using neural network model for Hong Kong. International Real Estate Review, 7(1), 121–138.
- Yılmaz, M., & Bostancı, B. (2023). Investigation of Real Estate Tax Leakage Loss Rates with ANNs. Buildings, 13(10), 2464. https://doi.org/10.3390/buildings13102464
- Yu, H., & Wu, J. (2016). Real estate price prediction with regression and classification. CS229 (Machine Learning). Final Project Reports.