Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of random forest for valuation and a cart-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772–1778. https://doi.org/10.1016/j.eswa.2011.08.07710.1016/j.eswa.2011.08.077
Aznar, J., Ferrís-Oñate, J., & Guijarro, F. (2010). An ANP framework for property pricing combining quantitative and qualitative attributes. The Journal of the Operational Research Society, 61(5), 740–755. https://doi.org/10.1057/jors.2009.3110.1057/jors.2009.31
Aznar, J., Guijarro, F., & Moreno-Jiménez, J. M. (2011). Mixed valuation methods: A combined AHPGP procedure for individual and group multicriteria agricultural valuation. Annals of Operations Research, 190(1), 221–238. https://doi.org/10.1007/s10479-009-0527-210.1007/s10479-009-0527-2
Baldominos, A., Blanco, I., Moreno, A. J., Iturrarte, R., Bernárdez, Ó., & Afonso, C. (2018). Identifying real estate opportunities using machine learning. Applied Sciences (Basel, Switzerland), 8(11), 2321. https://doi.org/10.3390/app811232110.3390/app8112321
Cupal, M., Sedlacik, M., & Michalek, J. (2019). The assessment of a building’s insurable value using multivariate statistics: The case of the Czech Republic. Real Estate Management and Valuation, 27(3), 81–96. https://doi.org/10.2478/remav-2019-002710.2478/remav-2019-0027
d’Amato, M. (2007). Comparing rough set theory with multiple regression analysis as automated valuation methodologies. International Real Estate Review, 10(2), 42–65.
Dmytrow, K., & Gnat, S. (2019). Application of AHP method in assessment of the influence of attributes on value in the process of real estate valuation. Real Estate Management and Valuation, 27(4), 15–26. https://doi.org/10.2478/remav-2019-003210.2478/remav-2019-0032
Eckert, J. K., Gloudemans, R. J., & Almy, R. R. (1990). Property appraisal and assessment administration. International Association of Assessing Officers.
Guijarro, F. (2019). Assessing the impact of road traffic externalities on residential price values: A case study in Madrid, Spain. International Journal of Environmental Research and Public Health, 16(24), 5149. https://doi.org/10.3390/ijerph16245149 PMID:3186105510.3390/ijerph16245149
Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., & Cai, Z. (2019). Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 82, 657–673. https://doi.org/10.1016/j.landusepol.2018.12.03010.1016/j.landusepol.2018.12.030
Kane, M. S., Linne, M. R., & Johnson, J. A. (2004). Practical Applications in Appraisal Valuation Modeling: Statistical Methods for Real Estate Practitioners. Appraisal Institute.
Pérez-Rave, J. I., Correa-Morales, J. C., & González-Echavarría, F. (2019). A machine learning approach to big data regression analysis of real estate prices for inferential and predictive purposes. Journal of Property Research, 36(1), 59–96. https://doi.org/10.1080/09599916.2019.158748910.1080/09599916.2019.1587489
Raslanas, S., Zavadskas, E. K., Kaklauskas, A., & Zabulenas, A. R. (2010). Land value tax in the context of sustainable urban development and assessment. Part II - Analysis of land valuation techniques: The case of Vilnius. International Journal of Strategic Property Management, 14(2), 173–190. https://doi.org/10.3846/ijspm.2010.1310.3846/ijspm.2010.13