Have a personal or library account? Click to login
Interobserver and sequence variability in the delineation of pelvic organs at risk on magnetic resonance images Cover

Interobserver and sequence variability in the delineation of pelvic organs at risk on magnetic resonance images

Open Access
|Jan 2025

References

  1. Hardcastle N, Tomé WA, Cannon DM, Brouwer CL, Wittendorp PW, Dogan N, et al. A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat Oncol 2012; 7: 90. doi: 10.1186/1748-717X-7-90
  2. Burridge N, Amer A, Marchant T, Sykes J, Stratford J, Henry A, et al. Online adaptive radiotherapy of the bladder: small bowel irradiated-volume reduction. Int J Radiat Oncol Biol Phys 2006; 66: 892-7. doi: 10.1016/j.ijrobp.2006.07.013
  3. Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, et al. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 2015; 54: 1474-82. doi: 10.3109/0284186X.2015.1062541
  4. Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 2011; 98: 154-61. doi: 10.1016/j.radonc.2010.11.016
  5. Hunt A, Hansen VN, Oelfke U, Nill S, Hafeez S. Adaptive radiotherapy enabled by MRI guidance. Clin Oncol (R Coll Radiol) 2018; 30: 711-9. doi: 10.1016/j.clon.2018.08.001
  6. Ahmed M, Schmidt M, Sohaib A, Kong C, Burke K, Richardson C, et al. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours – a study using flexible surface coils. Radiother Oncol 2010; 94: 161-7. doi: 10.1016/j.radonc.2009.12.021
  7. Sander L, Langkilde NC, Holmberg M, Carl J. MRI target delineation may reduce long-term toxicity after prostate radiotherapy. Acta Oncol 2014; 53: 809-14. doi: 10.3109/0284186X.2013.865077
  8. Tanaka H, Hayashi S, Ohtakara K, Hoshi H, Iida T. Usefulness of CT-MRI fusion in radiotherapy planning for localized prostate cancer. J Radiat Res 2011; 52: 782-8. doi: 10.1269/jrr.11053
  9. Hijab A, Tocco B, Hanson I, Meijer H, Nyborg CJ, Bertelsen AS, et al. MR-guided adaptive radiotherapy for bladder cancer. Front Oncol 2021; 11: 637591. doi: 10.3389/fonc.2021.637591
  10. Pathmanathan AU, van As NJ, Kerkmeijer LGW, Christodouleas J, Lawton CAF, Vesprini D, et al. Magnetic resonance imaging-guided adaptive radiation therapy: a “Game Changer” for prostate treatment? Int J Radiat Oncol Biol Phys 2018; 100: 361-73. doi: 10.1016/j.ijrobp.2017.10.020
  11. Vestergaard A, Hafeez S, Muren LP, Nill S, Høyer M, Hansen VN, et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol 2016; 118: 154-9. doi: 10.1016/j.radonc.2015.11.003
  12. Kerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp JRN, de Boer HCJ, van den Berg CAT. Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol (R Coll Radiol) 2018; 30: 692-701. doi: 10.1016/j.clon.2018.08.009
  13. Paulson ES, Crijns SP, Keller BM, Wang J, Schmidt MA, Coutts G, et al. Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 2016; 121: 187-92. doi: 10.1016/j.radonc.2016.09.018
  14. Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys 2012; 83: e353-e62. doi: 10.1016/j.ijrobp.2012.01.023
  15. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 18th International Conference, Munich, Germany; October 5-9, 2015. Proceedings. Lecture Notes in Computer Science, vol 9351. Springer, Cham. doi: 10.1007/978-3-319-24574-4_28
  16. Kieselmann JP, Kamerling CP, Burgos N, Menten MJ, Fuller CD, Nill S, et al. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Phys Med Biol 2018; 63: 145007. doi: 10.1088/1361-6560/aacb65
  17. Noel CE, Zhu F, Lee AY, Yanle H, Parikh PJ. Segmentation precision of abdominal anatomy for MRI-based radiotherapy. Med Dosim 2014; 39: 212-7. doi: 10.1016/j.meddos.2014.02.003
  18. Pekar V, Allaire S, Qazi A, Kim JJ, Jaffray DA. Head and neck auto-segmentation challenge: segmentation of the parotid lands. In: Jang Z, Navab N, Pluim JPW, Viergever MA, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. 13th International Conference, Beijing, China; September 20-24, 2010. Proceedings. Lecture Notes in Computer Science, vol 6362. p. 273-80. Springer. doi: 10.1007/978-3-642-15745-5
  19. Romeo V, Cavaliere C, Imbriaco M, Verde F, Petretta M, Franzese M, et al. Tumor segmentation analysis at different post-contrast time points: A possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. Eur J Radiol 2020; 126: 108907. doi: 10.1016/j.ejrad.2020.108907
  20. O’Connor LM, Dowling JA, Choi JH, Martin J, Warren-Forward H, Richardson H, et al. Validation of an MRI-only planning workflow for definitive pelvic radiotherapy. Radiat Oncol 2022; 17: 55. doi: 10.1186/s13014-022-02023-4
  21. Tyagi P, Moon CH, Connell M, Ganguly A, Cho KJ, Tarin T, et al. Intravesical contrast-enhanced MRI: a potential tool for bladder cancer surveillance and staging. Curr Oncol 2023; 30: 4632-47. doi: 10.3390/curroncol30050350
  22. Zhu QK, Du B, Yan PK, Lu HB, Zhang LP. Shape prior constrained PSO model for bladder wall MRI segmentation. Neurocomputing 2017; 294: 19-28. doi: 10.1016/j.neucom.2017.12.011
  23. Paley MR, Ros PR. MRI of the rectum: non-neoplastic disease. Eur Radiol 1998; 8: 3-8. doi: 10.1007/s003300050328
  24. Hwee J, Louie AV, Gaede S, Bauman G, D’Souza D, Sexton T, et al. Technology assessment of automated atlas based segmentation in prostate bed contouring. Radiat Oncol 2011; 6: 110. doi: 10.1186/1748-717X-6-110
  25. Huang S, Cheng Z, Lai L, Zheng W, He M, Li J, et al. Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med Phys 2021; 48: 7930-45. doi: 10.1002/mp.15285
  26. Chi JW, Brady M, Moore NR, Schnabel JA. Segmentation of the bladder wall using coupled level set methods. Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, Illinois, USA 2011; 1653-6. doi: 10.1109/ISBI.2011.5872721
DOI: https://doi.org/10.2478/raon-2025-0006 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 139 - 146
Submitted on: Jul 14, 2024
|
Accepted on: Nov 20, 2024
|
Published on: Jan 22, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wanjia Zheng, Xin Yang, Zesen Cheng, Jinxing Lian, Enting Li, Shaoling Mo, Yimei Liu, Sijuan Huang, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.