Have a personal or library account? Click to login
RAD54B promotes gastric cancer cell migration and angiogenesis via the Wnt/β-catenin pathway Cover

RAD54B promotes gastric cancer cell migration and angiogenesis via the Wnt/β-catenin pathway

Open Access
|Feb 2024

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–49. doi: <a href="https://doi.org/10.3322/caac.21660" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3322/caac.21660</a>
  2. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol 2019; 14: 26–38. doi: <a href="https://doi.org/10.5114/pg.2018.80001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5114/pg.2018.80001</a>
  3. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet 2020; 396: 635–48. doi: <a href="https://doi.org/10.1016/s0140-6736(20)31288-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/s0140-6736(20)31288-5</a>
  4. Lina X, Haiyanga Z, Boa Y, Haia H, Kea Z, Zoub K, et al. Plasma cell-free DNA for screening patients with benefit-assisted neoadjuvant chemotherapy for advanced gastric cancer. ScienceAsia 2020; 46: 462–71. doi: <a href="https://doi.org/10.2306/scienceasia1513-1874.2020.056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2306/scienceasia1513-1874.2020.056</a>
  5. Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I, et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer 2018; 21: 144–54. doi: <a href="https://doi.org/10.1007/s10120-017-0716-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10120-017-0716-7</a>
  6. Pazin MJ, Kadonaga JT. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 1997; 88: 737–40. doi: <a href="https://doi.org/10.1016/s0092-8674(00)81918-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/s0092-8674(00)81918-2</a>
  7. Miyagawa K, Tsuruga T, Kinomura A, Usui K, Katsura M, Tashiro S, et al. A role for RAD54B in homologous recombination in human cells. Embo J 2002; 21: 175–80. doi: <a href="https://doi.org/10.1093/emboj/21.1.175" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/emboj/21.1.175</a>
  8. Yasuhara T, Suzuki T, Katsura M, Miyagawa K. Rad54B serves as a scaffold in the DNA damage response that limits checkpoint strength. Nat Commun 2014; 5: 5426. doi: <a href="https://doi.org/10.1038/ncomms6426" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/ncomms6426</a>
  9. Zhang Z, Li X, Han Y, Ji T, Huang X, Gao Q, et al. RAD54B potentiates tumor growth and predicts poor prognosis of patients with luminal A breast cancer. Biomed Pharmacother 2019; 118: 109341. doi: <a href="https://doi.org/10.1016/j.biopha.2019.109341" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biopha.2019.109341</a>
  10. Feng S, Liu J, Hailiang L, Wen J, Zhao Y, Li X, et al. Amplification of RAD54B promotes progression of hepatocellular carcinoma via activating the Wnt/β-catenin signaling. Transl Oncol 2021; 14: 101124. doi: <a href="https://doi.org/10.1016/j.tranon.2021.101124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tranon.2021.101124</a>
  11. Xu C, Liu D, Mei H, Hu J, Luo M. Knockdown of RAD54B expression reduces cell proliferation and induces apoptosis in lung cancer cells. J Int Med Res 2019; 47: 5650–9. doi: <a href="https://doi.org/10.1177/0300060519869423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0300060519869423</a>
  12. Nagai Y, Yamamoto Y, Yasuhara T, Hata K, Nishikawa T, Tanaka T, et al. High RAD54B expression: an independent predictor of postoperative distant recurrence in colorectal cancer patients. Oncotarget 2015; 6: 21064–73. doi: <a href="https://doi.org/10.18632/oncotarget.4222" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18632/oncotarget.4222</a>
  13. Amaral T, Schulze M, Sinnberg T, Nieser M, Martus P, Battke F, et al. Are pathogenic germline variants in metastatic melanoma associated with resistance to combined immunotherapy? Cancers 2020; 12. doi: <a href="https://doi.org/10.3390/cancers12051101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers12051101</a>
  14. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019; 47: W556–60. doi: <a href="https://doi.org/10.1093/nar/gkz430" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/nar/gkz430</a>
  15. Deng T, Zhong P, Lou R, Yang, X. RNF220 promotes gastric cancer growth and stemness via modulating the USP22/wnt/β-catenin pathway. Tissue Cell 2023; 83: 102123. doi: <a href="https://doi.org/10.1016/j.tice.2023.102123" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tice.2023.102123</a>
  16. Matsuoka T, Yashiro M. Biomarkers of gastric cancer: Current topics and future perspective. World J Gastroenterol 2018; 24: 2818–32. doi: <a href="https://doi.org/10.3748/wjg.v24.i26.2818" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3748/wjg.v24.i26.2818</a>
  17. McAndrew EN, McManus KJ. The enigmatic oncogene and tumor suppressor-like properties of RAD54B: Insights into genome instability and cancer. Genes Chromosomes Cancer 2017; 56: 513–23. doi: <a href="https://doi.org/10.1002/gcc.22458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/gcc.22458</a>
  18. Wang M, Liao J, Tan C, Zhou H, Wang J, Wang K, et al. Integrated study of miR-215 promoting breast cancer cell apoptosis by targeting RAD54B. J Cell Mol Med 2021; 25: 3327–38. doi: <a href="https://doi.org/10.1111/jcmm.16402" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/jcmm.16402</a>
  19. Wang R, Li Y, Chen Y, Wang L, Wu Q, Guo Y, et al. Inhibition of RAD54B suppresses proliferation and promotes apoptosis in hepatoma cells. Oncol Rep 2018; 40: 1233–42. doi: <a href="https://doi.org/10.3892/or.2018.6522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3892/or.2018.6522</a>
  20. Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010; 31: 158–75. doi: <a href="https://doi.org/10.1097/BCR.0b013e3181c7ed82" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1097/BCR.0b013e3181c7ed82</a>
  21. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–57. doi: <a href="https://doi.org/10.1038/35025220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/35025220</a>
  22. Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y, Yamada T, et al. Tumor neovascularization and developments in therapeutics. Cancers 2019; 11. doi: <a href="https://doi.org/10.3390/cancers11030316" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers11030316</a>
  23. Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27: 82–101. doi: <a href="https://doi.org/10.1016/j.drudis.2021.07.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.drudis.2021.07.007</a>
  24. Li TH, Zhao BB, Qin C, Wang YY, Li ZR, Cao HT, et al. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol 2021; 44: 1425–37. doi: <a href="https://doi.org/10.1007/s13402-021-00651-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13402-021-00651-8</a>
  25. Xueqin T, Jinhong M, Yuping H. Inhibin subunit beta A promotes cell proliferation and metastasis of breast cancer through Wnt/β-catenin signaling pathway. Bioengineered 2021; 12: 11567–75. doi: <a href="https://doi.org/10.1080/21655979.2021.1971028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/21655979.2021.1971028</a>
  26. Yan Y, Zhang Y, Li M, Zhang Y, Zhang X, Zhang X, et al. C644-0303, a small-molecule inhibitor of the Wnt/β-catenin pathway, suppresses colorectal cancer growth. Cancer Sci 2021; 112: 4722–35. doi: <a href="https://doi.org/10.1111/cas.15118" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/cas.15118</a>
  27. Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell 2014; 5: 186–93. doi: <a href="https://doi.org/10.1007/s13238-014-0019-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13238-014-0019-2</a>
  28. Machin P, Catasus L, Pons C, Muñoz J, Matias-Guiu X, Prat J. CTNNB1 mutations and beta-catenin expression in endometrial carcinomas. Hum Pathol 2002; 33: 206–12. doi: <a href="https://doi.org/10.1053/hupa.2002.30723" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1053/hupa.2002.30723</a>
  29. Crawford HC, Fingleton B, Gustavson MD, Kurpios N, Wagenaar RA, Hassell JA, et al. The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol Cell Biol 2001; 21: 1370–83. doi: <a href="https://doi.org/10.1128/mcb.21.4.1370-1383.2001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/mcb.21.4.1370-1383.2001</a>
  30. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155: 1033–8. doi: <a href="https://doi.org/10.1016/s0002-9440(10)65204-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/s0002-9440(10)65204-2</a>
DOI: https://doi.org/10.2478/raon-2024-0007 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 67 - 77
Submitted on: Jul 28, 2023
Accepted on: Nov 6, 2023
Published on: Feb 21, 2024
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jianchao Li, Hui Geng, Xin Li, Shenshan Zou, Xintao Xu, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.