Have a personal or library account? Click to login
The equivalence of different types of electric pulses for electrochemotherapy with cisplatin − an in vitro study Cover

The equivalence of different types of electric pulses for electrochemotherapy with cisplatin − an in vitro study

Open Access
|Feb 2024

References

  1. Campana LG, Miklavčič D, Bertino G, Marconato R, Valpione S, Imarisio I, et al. Electrochemotherapy of superficial tumors – current status: basic principles, operating procedures, shared indications, and emerging applications. Sem Oncol 2019; 46: 173–91. doi: <a href="https://doi.org/10.1053/j.seminoncol.2019.04.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1053/j.seminoncol.2019.04.002</a>
  2. Campana LG, Edhemović I, Soden D, Perrone AM, Scarpa M, Campanacci L, et al. Electrochemotherapy – emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur J Surg Oncol 2019; 45: 92–102. doi: <a href="https://doi.org/10.1016/j.ejso.2018.11.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejso.2018.11.023</a>
  3. Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, et al. Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 2010; 9: 1–12. doi: <a href="https://doi.org/10.1186/1475-925X-9-10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/1475-925X-9-10</a>
  4. Cindrič H, Miklavčič D, Cornelis FH, Kos B. Optimization of transpedicular electrode insertion for electroporation-based treatments of vertebral tumors. Cancers 2022; 14: 5412. doi: <a href="https://doi.org/10.3390/cancers14215412" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers14215412</a>
  5. Edhemovic I, Brecelj E, Gasljevic G, Marolt Music M, Gorjup V, Mali B, et al. Intraoperative electrochemotherapy of colorectal liver metastases. J Surg Oncol 2014; 110: 320–7. doi: <a href="https://doi.org/10.1002/jso.23625" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jso.23625</a>
  6. Bianchi G, Campanacci L, Ronchetti M, Donati D. Electrochemotherapy in the treatment of bone metastases: a phase II trial. World J Surg 2016; 40: 3088–94. doi: <a href="https://doi.org/10.1007/s00268-016-3627-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00268-016-3627-6</a>
  7. Granata V, Fusco R, Piccirillo M, Palaia R, Petrillo A, Lastoria S, et al. Electrochemotherapy in locally advanced pancreatic cancer: preliminary results. Int J Surg 2015; 18: 230–6. doi: <a href="https://doi.org/10.1016/j.ijsu.2015.04.055." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijsu.2015.04.055.</a>
  8. Simioni A, Valpione S, Granziera E, Rossi CR, Cavallin F, Spina R, et al. Ablation of soft tissue tumours by long needle variable electrode-geometry electrochemotherapy: final report from a single-arm, single-centre phase-2 study. Sci Rep 2020; 10: 2291. doi: <a href="https://doi.org/10.1038/s41598-020-59230-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-020-59230-w</a>
  9. Tarantino L, Busto G, Nasto A, Nasto RA, Tarantino P, Fristachi R, et al. Electrochemotherapy of cholangiocellular carcinoma at hepatic hilum: a feasibility study. Eur J Surg Oncol 2018; 44: 1603–9. doi: <a href="https://doi.org/10.1016/j.ejso.2018.06.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejso.2018.06.025</a>
  10. Gehl J, Sersa G, Matthiessen LW, Muir T, Soden D, Occhini A, et al. Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncol 2018; 57: 874–82. doi: <a href="https://doi.org/10.1080/0284186X.2018.1454602" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/0284186X.2018.1454602</a>
  11. Mir LM, Gehl J, Sersa G, Collins CG, Garbay JR, Billard V, et al. Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur J Cancer Suppl 2006; 4: 14–25. doi: <a href="https://doi.org/10.1016/j.ejcsup.2006.08.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejcsup.2006.08.003</a>
  12. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M. Electrochemotherapy in treatment of tumours. Eur J Surg Oncol EJSO 2008; 34: 232–40. doi: <a href="https://doi.org/10.1016/j.ejso.2007.05.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejso.2007.05.016</a>
  13. Sersa G, Cemazar M, Miklavcic D. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum (II) in mice. Cancer Res 1995; 55: 3450–5. PMID: 7614485
  14. Orlowski S, Belehradek Jr J, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture: increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol 1988; 37: 4727–33. doi: <a href="https://doi.org/10.1016/0006-2952(88)90344-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0006-2952(88)90344-9</a>
  15. Mir LM. Bases and rationale of the electrochemotherapy. Eur J Cancer Suppl 2006; 4: 38–44. doi: <a href="https://doi.org/10.1016/j.ejcsup.2006.08.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejcsup.2006.08.005</a>
  16. Jarm T, Cemazar M, Miklavcic D, Sersa G. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer Ther 2010; 10: 729–46. doi: <a href="https://doi.org/10.1586/era.10.43" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1586/era.10.43</a>
  17. Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 2008; 98: 388–98. doi: <a href="https://doi.org/10.1038/sj.bjc.6604168" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/sj.bjc.6604168</a>
  18. Markelc B, Sersa G, Cemazar M. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels. PloS One 2013; 8: e59557. doi: <a href="https://doi.org/10.1371/journal.pone.0059557" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0059557</a>
  19. Serša G, Miklavčič D, Čemažar M, Belehradek Jr J, Jarm T, Mir LM. Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompotent and immunodeficient mice. Bioelectrochem Bioenerg 1997; 43: 279–83. doi: <a href="https://doi.org/10.1016/S0302-4598(96)05194-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0302-4598(96)05194-X</a>
  20. Calvet CY, Mir LM. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev 2016; 35: 165–77. doi: <a href="https://doi.org/10.1007/s10555-016-9615-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10555-016-9615-3</a>
  21. Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 2014; 13: 1–20. doi: <a href="https://doi.org/10.1186/1475-925X-13-29" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/1475-925X-13-29</a>
  22. Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, et al. Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 2006; 4: 3–13. doi: <a href="https://doi.org/10.1016/j.ejcsup.2006.08.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejcsup.2006.08.002</a>
  23. Sano MB, Fan RE, Cheng K, Saenz Y, Sonn GA, Hwang GL, et al. Reduction of muscle contractions during irreversible electroporation therapy using high-frequency bursts of alternating polarity pulses: a laboratory investigation in an ex vivo swine model. J Vasc Interv Radiol 2018; 29: 893–8.e4. doi: <a href="https://doi.org/10.1016/j.jvir.2017.12.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jvir.2017.12.019</a>
  24. Fusco R, Di Bernardo E, D’Alessio V, Salati S, Cadossi M. Reduction of muscle contraction and pain in electroporation-based treatments: an overview. World J Clin Oncol 2021; 12: 367. doi: <a href="https://doi.org/10.5306/wjco.v12.i5.367" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5306/wjco.v12.i5.367</a>
  25. Miklavcic D, Corovic S, Pucihar G, Pavselj N. Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Suppl 2006; 4: 45–51. doi: <a href="https://doi.org/10.1016/j.ejcsup.2006.08.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejcsup.2006.08.006</a>
  26. Martin RC, Schwartz E, Adams J, Farah I, Derhake BM. Intra-operative anesthesia management in patients undergoing surgical irreversible electroporation of the pancreas, liver, kidney, and retroperitoneal tumors. Anesthesiol Pain Med 2015; 5: e22786. doi: <a href="https://doi.org/10.5812/aapm.22786" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5812/aapm.22786</a>
  27. Deodhar A, Dickfeld T, Single GW, Hamilton Jr WC, Thornton RH, Sofocleous CT, et al. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. Am J Roentgenol 2011; 196: W330–5. doi: <a href="https://doi.org/10.2214/AJR.10.4490" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2214/AJR.10.4490</a>
  28. Mali B, Jarm T, Corovic S, Paulin-Kosir MS, Cemazar M, Sersa G, et al. The effect of electroporation pulses on functioning of the heart. Med Biol Eng Comput 2008; 46: 745–57. doi: <a href="https://doi.org/10.1007/s11517-008-0346-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11517-008-0346-7</a>
  29. Ball C, Thomson KR, Kavnoudias H. Irreversible electroporation: a new challenge in “out of operating theater” anesthesia. Anesth Analg 2010; 110: 1305–9. doi: <a href="https://doi.org/10.1213/ane.0b013e3181d27b30" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1213/ane.0b013e3181d27b30</a>
  30. Cannon R, Ellis S, Hayes D, Narayanan G, Martin RC. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol 2013; 107: 544–9. doi: <a href="https://doi.org/10.1002/jso.23280" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jso.23280</a>
  31. Spallek H, Bischoff P, Zhou W, de Terlizzi F, Jakob F, Kovàcs A. Percutaneous electrochemotherapy in primary and secondary liver malignancies–local tumor control and impact on overall survival. Radiol Oncol 2022; 56: 102–10. doi: <a href="https://doi.org/10.2478/raon-2022-0003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/raon-2022-0003</a>
  32. Cvetkoska A, Maček-Lebar A, Trdina P, Miklavčič D, Reberšek M. Muscle contractions and pain sensation accompanying high-frequency electroporation pulses. Sci Rep 2022; 12: 1–15. doi: <a href="https://doi.org/10.1038/s41598-022-12112-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-022-12112-9</a>
  33. Arena CB, Sano MB, Rossmeisl JH, Caldwell JL, Garcia PA, Rylander MN, et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online 2011; 10: 1–21. doi: <a href="https://doi.org/10.1186/1475-925X-10-102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/1475-925X-10-102</a>
  34. Dong S, Wang H, Zhao Y, Sun Y, Yao C. First human trial of high-frequency irreversible electroporation therapy for prostate cancer. Technol Cancer Res Treat 2018; 17: 1533033818789692. doi: <a href="https://doi.org/10.1177/1533033818789692" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/1533033818789692</a>
  35. van Es R, Konings MK, Du Pré BC, Neven K, van Wessel H, van Driel VJ, et al. High-frequency irreversible electroporation for cardiac ablation using an asymmetrical waveform. Biomed Eng OnLine 2019; 18: 1–13. doi: <a href="https://doi.org/10.1186/s12938-019-0693-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12938-019-0693-7</a>
  36. Ye X, Liu S, Yin H, He Q, Xue Z, Lu C, et al. Study on optimal parameter and target for pulsed-field ablation of atrial fibrillation. Front Cardiovasc Med 2021; 8: 690092. doi: <a href="https://doi.org/10.3389/fcvm.2021.690092" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fcvm.2021.690092</a>
  37. Hartl S, Reinsch N, Füting A, Neven K. Pearls and pitfalls of pulsed field ablation. Korean Circ J 2022; 53: 273–93. doi: <a href="https://doi.org/10.4070/kcj.2023.0023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4070/kcj.2023.0023</a>
  38. Scuderi M, Rebersek M, Miklavcic D, Dermol-Cerne J. The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro. Radiol Oncol 2019; 53: 194–205. doi: <a href="https://doi.org/10.2478/raon-2019-0025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/raon-2019-0025</a>
  39. Sweeney DC, Reberšek M, Dermol J, Rems L, Miklavčič D, Davalos RV. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochim Biophys Acta BBA-Biomembr 2016; 1858: 2689–98. doi: <a href="https://doi.org/10.1016/j.bbamem.2016.06.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bbamem.2016.06.024</a>
  40. Lyons P, Polini D, Russell-Ryan K, Clover AJP. High-frequency electroporation and chemotherapy for the treatment of cutaneous malignancies: evaluation of early clinical response. Cancers 2023; 15: 3212. doi: <a href="https://doi.org/10.3390/cancers15123212" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers15123212</a>
  41. Pfefferle V, Häfner HM, Saur A, Kofler K, Kofler L. Electrochemotherapy in analgosedation for patients with reduced ability to receive general anesthesia. JDDG J Dtsch Dermatol Ges 2022; 20: 1384–6. doi: <a href="https://doi.org/10.1111/ddg.14855." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/ddg.14855.</a>
  42. Pfefferle V, Leiter U, Grünke T, Kofler K, Häfner HM, Kofler L. Electrochemotherapy under analgosedation – case report of a patient with Kaposi’s sarcoma. J Eur Acad Dermatol Venereol 2023; 37: e209–11. doi: <a href="https://doi.org/10.1111/jdv.18518" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/jdv.18518</a>
  43. Mir LM, Orlowski S, Belehradek Jr J, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer Clin Oncol 1991; 27: 68–72. doi: <a href="https://doi.org/10.1016/0277-5379(91)90064-k" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0277-5379(91)90064-k</a>
  44. Trotovšek B, Djokić M, Čemažar M, Serša G. New era of electrochemotherapy in treatment of liver tumors in conjunction with immunotherapies. World J Gastroenterol 2021; 27: 8216. doi: <a href="https://doi.org/10.3748/wjg.v27.i48.8216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3748/wjg.v27.i48.8216</a>
  45. Heller R, Gilbert R, Jaroszeski MJ. Electrochemotherapy of murine melanoma using intratumor drug administration. Methods Mol Med 2000; 37: 253–7. doi: <a href="https://doi.org/10.1385/1-59259-080-2:253." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1385/1-59259-080-2:253.</a>
  46. Sedlar A, Jesenko T, Markelc B, Prosen L. Potentiation of electrochemotherapy by intramuscular IL-12 gene electrotransfer in murine sarcoma and carcinoma with different immunogenicity. Radiol Oncol 2012; 46: 302–11. doi: <a href="https://doi.org/10.2478/v10019-012-0044-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10019-012-0044-9</a>
  47. Ursic K, Kos S, Kamensek U, Cemažar M, Miceska S, Markelc B, et al. Potentiation of electrochemotherapy effectiveness by immunostimulation with IL-12 gene electrotransfer in mice is dependent on tumor immune status. J Controlled Release 2021; 332: 623–35. doi: <a href="https://doi.org/10.1016/j.jconrel.2021.03.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jconrel.2021.03.009</a>
  48. Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, et al. Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 2015; 64: 1315–27. doi: <a href="https://doi.org/10.1007/s00262-015-1724-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00262-015-1724-2</a>
  49. Rosazza C, Haberl Meglic S, Zumbusch A, Rols MP, Miklavcic D. Gene electrotransfer: a mechanistic perspective. Curr Gene Ther 2016; 16: 98–129. doi: <a href="https://doi.org/10.2174/1566523216666160331130040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2174/1566523216666160331130040</a>
  50. Radzevičiūtė E, Malyško-Ptašinskė V, Kulbacka J, Rembia\lkowska N, Novickij J, Girkontaitė I, et al. Nanosecond electrochemotherapy using bleomycin or doxorubicin: influence of pulse amplitude, duration and burst frequency. Bioelectrochemistry 2022; 148: 108251. doi: <a href="https://doi.org/10.1016/j.bioelechem.2022.108251" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2022.108251</a>
  51. Novickij V, Balevičiūtė A, Malyško V, Želvys A, Radzevičiūtė E, Kos B, et al. Effects of time delay between unipolar pulses in high frequency nano-electrochemotherapy. IEEE Trans Biomed Eng 2021; 69: 1726–32. doi: <a href="https://doi.org/10.1109/TBME.2021.3129176" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TBME.2021.3129176</a>
  52. Vizintin A, Markovic S, Scancar J, Kladnik J, Turel I, Miklavcic D. Nanosecond electric pulses are equally effective in electrochemotherapy with cisplatin as microsecond pulses. Radiol Oncol 2022; 56: 326–35. doi: <a href="https://doi.org/10.2478/raon-2022-0028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/raon-2022-0028</a>
  53. Cemazar M, Sersa G, Frey W, Miklavcic D, Teissié J. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 2018; 122: 69–76. doi: <a href="https://doi.org/10.1016/j.bioelechem.2018.03.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2018.03.005</a>
  54. Protocol AG. CellTiter 96® AQueous One Solution Cell Proliferation Assay. Promega USA. [Internet]. [cited 2023 Oct 15]. Available at: https://www.promega.com/-/media/files/resources/protocols/technical-bulletins/0/celltiter-96-aqueous-one-solution-cell-proliferation-assay-system-protocol.pdf
  55. Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–19. doi: <a href="https://doi.org/10.1038/nprot.2006.339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/nprot.2006.339</a>
  56. Sweeney DC, Douglas TA, Davalos RV. Characterization of cell membrane permeability in vitro part II: computational model of electroporation-mediated membrane transport. Technol Cancer Res Treat 2018; 17: 1533033818792490. doi: <a href="https://doi.org/10.1177/1533033818792490" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/1533033818792490</a>
  57. Mahnič-Kalamiza S, Miklavčič D, Vorobiev E. Dual-porosity model of solute diffusion in biological tissue modified by electroporation. Biochim Biophys Acta BBA-Biomembr 2014; 1838: 1950–66. doi: <a href="https://doi.org/10.1016/j.bbamem.2014.03.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bbamem.2014.03.004</a>
  58. Nejad MA, Urbassek HM. Diffusion of cisplatin molecules in silica nano-pores: molecular dynamics study of a targeted drug delivery system. J Mol Graph Model 2019; 86: 228–34. doi: <a href="https://doi.org/10.1016/j.jmgm.2018.10.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmgm.2018.10.021</a>
  59. Panczyk T, Jagusiak A, Pastorin G, Ang WH, Narkiewicz-Michalek J. Molecular dynamics study of cisplatin release from carbon nanotubes capped by magnetic nanoparticles. J Phys Chem C 2013; 117: 17327–36. doi: <a href="https://doi.org/10.1021/jp405593u" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/jp405593u</a>
  60. Jakštys B, Ruzgys P, Tamošiūnas M, Šatkauskas S. Different cell viability assays reveal inconsistent results after bleomycin electrotransfer in vitro. J Membr Biol 2015; 248: 857–63. doi: <a href="https://doi.org/10.1007/s00232-015-9813-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00232-015-9813-x</a>
  61. Hucke A, Ciarimboli G. The role of transporters in the toxicity of chemotherapeutic drugs: focus on transporters for organic cations. J Clin Pharmacol 2016; 56: S157–72. doi: <a href="https://doi.org/10.1002/jcph.706" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jcph.706</a>
  62. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 2019; 53: 148–58. doi: <a href="https://doi.org/10.2478/raon-2019-0018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/raon-2019-0018</a>
  63. Howell SB, Safaei R, Larson CA, Sailor MJ. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol 2010; 77: 887–94. doi: <a href="https://doi.org/10.1124/mol.109.063172" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1124/mol.109.063172</a>
  64. Spreckelmeyer S, Orvig C, Casini A. Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin. Molecules 2014; 19: 15584–610. doi: <a href="https://doi.org/10.3390/molecules191015584" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/molecules191015584</a>
  65. Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 2012; 64: 706–21. doi: <a href="https://doi.org/10.1124/pr.111.005637" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1124/pr.111.005637</a>
  66. Pucihar G, Krmelj J, Reberšek M, Napotnik TB, Miklavčič D. Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 2011; 58: 3279–88. doi: <a href="https://doi.org/10.1109/TBME.2011.2167232" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TBME.2011.2167232</a>
  67. Peng W, Polajžer T, Yao C, Miklavčič D. Dynamics of cell death due to electroporation using different pulse parameters as revealed by different viability assays. Ann Biomed Eng 2023. [Internet]. doi: <a href="https://doi.org/10.1007/s10439-023-03309-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10439-023-03309-8.</a> Available at: https://www.researchgate.net/publication/373911137_Dynamics_of_Cell_Death_Due_to_Electroporation_Using_Different_Pulse_Parameters_as_Revealed_by_Different_Viability_Assays
  68. Dermol-Černe J, Vidmar J, Ščančar J, Uršič K, Serša G, Miklavčič D. Connecting the in vitro and in vivo experiments in electrochemotherapy-a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model. J Controlled Release 2018; 286: 33–45. doi: <a href="https://doi.org/10.1016/j.jconrel.2018.07.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jconrel.2018.07.021</a>
  69. Daley-Yates PT, McBrien DC. Cisplatin metabolites in plasma, a study of their pharmacokinetics and importance in the nephrotoxic and antitumour activity of cisplatin. Biochem Pharmacol 1984; 33: 3063–70. doi: <a href="https://doi.org/10.1016/0006-2952(84)90610-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0006-2952(84)90610-5</a>
  70. Gately DP, Howell SB. Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 1993; 67: 1171–6. doi: <a href="https://doi.org/10.1038/bjc.1993.221" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/bjc.1993.221</a>
  71. Rols MP, Femenia P, Teissie J. Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochem Biophys Res Commun 1995; 208: 26–35. doi: <a href="https://doi.org/10.1006/bbrc.1995.1300" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/bbrc.1995.1300</a>
  72. Clover AJP, de Terlizzi F, Bertino G, Curatolo P, Odili J, Campana LG, et al. Electrochemotherapy in the treatment of cutaneous malignancy: outcomes and subgroup analysis from the cumulative results from the pan-European International Network for Sharing Practice in Electrochemotherapy database for 2482 lesions in 987 patients (2008–2019). Eur J Cancer 2020; 138: 30–40. doi: <a href="https://doi.org/10.1016/j.ejca.2020.06.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejca.2020.06.020</a>
  73. Cornelis FH, Ben Ammar M, Nouri-Neuville M, Matton L, Benderra MA, Gligorov J, et al. Percutaneous image-guided electrochemotherapy of spine metastases: initial experience. Cardiovasc Intervent Radiol 2019; 42: 1806–9. doi: <a href="https://doi.org/10.1007/s00270-019-02316-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00270-019-02316-4</a>
  74. Tarantino L, Busto G, Nasto A, Fristachi R, Cacace L, Talamo M, et al. Percutaneous electrochemotherapy in the treatment of portal vein tumor thrombosis at hepatic hilum in patients with hepatocellular carcinoma in cirrhosis: a feasibility study. World J Gastroenterol 2017; 23: 906. doi: <a href="https://doi.org/10.3748/wjg.v23.i5.906" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3748/wjg.v23.i5.906</a>
  75. Djokic M, Cemazar M, Stabuc M, Petric M, Smid LM, Jansa R, et al. Percutaneous image guided electrochemotherapy of hepatocellular carcinoma: technological advancement. Radiol Oncol 2020; 54: 347–52. doi: <a href="https://doi.org/10.2478/raon-2020-0038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/raon-2020-0038</a>
  76. Gudvangen E, Kim V, Novickij V, Battista F, Pakhomov AG. Electroporation and cell killing by milli-to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci Rep 2022; 12: 1–15. doi: <a href="https://doi.org/10.1038/s41598-022-04868-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-022-04868-x</a>
  77. Kim V, Gudvangen E, Kondratiev O, Redondo L, Xiao S, Pakhomov AG. Peculiarities of neurostimulation by intense nanosecond pulsed electric fields: how to avoid firing in peripheral nerve fibers. Int J Mol Sci 2021; 22: 7051. doi: <a href="https://doi.org/10.3390/ijms22137051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijms22137051</a>
  78. Jung J, Kim DH, Son J, Lee SK, Son BS. Comparative study between local anesthesia and general anesthesia in the treatment of primary spontaneous pneumothorax. Ann Transl Med 2019; 7: 553. doi: <a href="https://doi.org/10.21037/atm.2019.09.89" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21037/atm.2019.09.89</a>
  79. Vižintin A, Marković S, Ščančar J, Miklavčič D. Electroporation with nanosecond pulses and bleomycin or cisplatin results in efficient cell kill and low metal release from electrodes. Bioelectrochemistry 2021; 140: 107798. doi: <a href="https://doi.org/10.1016/j.bioelechem.2021.107798" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2021.107798</a>
  80. Bendix MB, Houston A, Forde PF, Brint E. Electrochemotherapy and immune interactions; a boost to the system? Eur J Surg Oncol 2022; 48: 1895–900. doi: <a href="https://doi.org/10.1016/j.ejso.2022.05.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejso.2022.05.023</a>
  81. Groselj A, Bosnjak M, Jesenko T, Cemazar M, Markelc B, Strojan P, et al. Treatment of skin tumors with intratumoral interleukin 12 gene electrotransfer in the head and neck region: a first-in-human clinical trial protocol. Radiol Oncol 2022; 56: 398–408. doi: <a href="https://doi.org/10.2478/raon-2022-0021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/raon-2022-0021</a>
  82. Napotnik TB, Polajžer T, Miklavčič D. Cell death due to electroporation–a review. Bioelectrochemistry 2021; 141: 107871. doi: <a href="https://doi.org/10.1016/j.bioelechem.2021.107871" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2021.107871</a>
  83. Kesar U, Markelc B, Jesenko T, Ursic Valentinuzzi K, Cemazar M, Strojan P, et al. Effects of electrochemotherapy on immunologically important modifications in tumor cells. Vaccines 2023; 11: 925. doi: <a href="https://doi.org/10.3390/vaccines11050925" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/vaccines11050925</a>
  84. Calvet CY, Famin D, André FM, Mir LM. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology 2014; 3: e28131. doi: <a href="https://doi.org/10.4161/onci.28131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4161/onci.28131</a>
  85. Gerlini G, Di Gennaro P, Borgognoni L. Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation. Oncoimmunology 2012; 1: 1655–7. doi: <a href="https://doi.org/10.4161/onci.21991" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4161/onci.21991</a>
  86. Gerlini G, Sestini S, Di Gennaro P, Urso C, Pimpinelli N, Borgognoni L. Dendritic cells recruitment in melanoma metastasis treated by electrochemotherapy. Clin Exp Metastasis 2013; 30: 37–45. doi: <a href="https://doi.org/10.1007/s10585-012-9505-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10585-012-9505-1</a>
  87. Cemazar M, Ambrozic Avgustin J, Pavlin D, Sersa G, Poli A, Krhac Levacic A, et al. Efficacy and safety of electrochemotherapy combined with peritumoral IL-12 gene electrotransfer of canine mast cell tumours. Vet Comp Oncol 2017; 15: 641–54. doi: <a href="https://doi.org/10.1111/vco.12208" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/vco.12208</a>
  88. Reed SD, Fulmer A, Buckholz J, Zhang B, Cutrera J, Shiomitsu K, et al. Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs. Cancer Gene Ther 2010; 17: 457–64. doi: <a href="https://doi.org/10.1038/cgt.2010.6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/cgt.2010.6</a>
  89. Tratar UL, Milevoj N, Cemazar M, Znidar K, Valentinuzzi KU, Brozic A, et al. Treatment of spontaneous canine mast cell tumors by electrochemotherapy combined with IL-12 gene electrotransfer: comparison of intratumoral and peritumoral application of IL-12. Int Immunopharmacol 2023; 120: 110274. doi: <a href="https://doi.org/10.1016/j.intimp.2023.110274" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.intimp.2023.110274</a>
  90. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896. doi: <a href="https://doi.org/10.1200/JCO.2007.15.6794" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1200/JCO.2007.15.6794</a>
  91. Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144: 107994. doi: <a href="https://doi.org/10.1016/j.bioelechem.2021.107994" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2021.107994</a>
  92. Bulysheva A, Heller L, Francis M, Varghese F, Boye C, Heller R. Monopolar gene electrotransfer enhances plasmid DNA delivery to skin. Bioelectrochemistry 2021; 140: 107814. doi: <a href="https://doi.org/10.1016/j.bioelechem.2021.107814" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2021.107814</a>
  93. Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11: 2601. doi: <a href="https://doi.org/10.1038/s41467-020-16505-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41467-020-16505-0</a>
  94. Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, et al. Effect of Experimental electrical and biological parameters on gene transfer by electroporation: a systematic review and meta-analysis. Pharmaceutics 2022; 14: 2700. doi: <a href="https://doi.org/10.3390/pharmaceutics14122700" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/pharmaceutics14122700</a>
  95. Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, et al. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology 2020; 295: 254–72. doi: <a href="https://doi.org/10.1148/radiol.2020192190" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1148/radiol.2020192190</a>
  96. Cindric H, Mariappan P, Beyer L, Wiggermann P, Moche M, Miklavcic D, et al. Retrospective study for validation and improvement of numerical treatment planning of irreversible electroporation ablation for treatment of liver tumors. IEEE Trans Biomed Eng 2021; 68: 3513–24. doi: <a href="https://doi.org/10.1109/TBME.2021.3075772" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TBME.2021.3075772</a>
  97. Scuderi M, Dermol-Černe J, da Silva CA, Muralidharan A, Boukany PE, Rems L. Models of electroporation and the associated transmembrane molecular transport should be revisited. Bioelectrochemistry 2022; 147: 108216. doi: <a href="https://doi.org/10.1016/j.bioelechem.2022.108216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bioelechem.2022.108216</a>
  98. Frandsen SK, Gehl J. A review on differences in effects on normal and malignant cells and tissues to electroporation-based therapies: a focus on calcium electroporation. Technol Cancer Res Treat 2018; 17: 1533033818788077. doi: <a href="https://doi.org/10.1177/1533033818788077" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/1533033818788077</a>
  99. Polajžer T, Miklavčič D. Immunogenic cell death in electroporation-based therapies depends on pulse waveform characteristics. Vaccines 2023; 11: 1036. doi: <a href="https://doi.org/10.3390/vaccines11061036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/vaccines11061036</a>
DOI: https://doi.org/10.2478/raon-2024-0005 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 51 - 66
Submitted on: Nov 20, 2023
Accepted on: Dec 5, 2023
Published on: Feb 21, 2024
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Maria Scuderi, Janja Dermol-Cerne, Janez Scancar, Stefan Markovic, Lea Rems, Damijan Miklavcic, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.