Have a personal or library account? Click to login
A retrospective study on improving the accuracy of radiotherapy for patients with breast cancer with lymph node metastasis using Styrofoam Cover

A retrospective study on improving the accuracy of radiotherapy for patients with breast cancer with lymph node metastasis using Styrofoam

Open Access
|Jan 2024

References

  1. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today [EB/OL].(cited 2022 Nov 07). Available at: https://gco.iarc.fr/today.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021, 71: 209–49. doi: <a href="https://doi.org/10.3322/caac.21660." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3322/caac.21660.</a>
  3. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the wxtent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 366: 2087–106. doi: <a href="https://doi.org/10.1016/S0140-6736(05)67887-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0140-6736(05)67887-7</a>
  4. Barnett GC, Wilkinson JS, Moody AM, Wilson CB, Twyman N, Wishart GC, et al. The Cambridge breast intensity-modulated radiotherapy trial: Patient-and treatment-related factors that influence late toxicity. Clin Oncol (R Coll Radiol) 2011; 23: 662–73. doi: <a href="https://doi.org/10.1016/j.clon.2011.04.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.clon.2011.04.011</a>
  5. Mukesh MB, Qian W, Wilkinson JS, Dorling L, Barnett GC, Moody AM, et al. Patient reported outcome measures (PROMs) following forward planned field-in field IMRT: Results from the Cambridge breast IMRT trial. Radiother Oncol 2014; 111: 270–5. doi: <a href="https://doi.org/10.1016/j.radonc.2014.02.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.radonc.2014.02.016</a>
  6. O’Connell AM, Karellas A, Vedantham S, Kawakyu-O’Connor DT. Newer technologies in breast cancer imaging: Dedicated cone-beam breast CT. Semin Ultrasound CT MR 2018, 39: 106–13. doi: <a href="https://doi.org/10.1053/j.sult.2017.09.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1053/j.sult.2017.09.001</a>
  7. Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, Bergh J, et al. Estimating the risks of breast cancer radiotherapy: Evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol 2017; 35: 1641–9. doi: <a href="https://doi.org/10.1200/JCO.2016.72.0722" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1200/JCO.2016.72.0722</a>
  8. Vasiljevic D, Arnold C, Neuman D, Fink K, Popovscaia M, Kvitsaridze I, et al. Occurrence of pneumonitis following radiotherapy of breast cancer – A prospective study. Strahlenther Onkol 2018; 194: 520–32. doi: <a href="https://doi.org/10.1007/s00066-017-1257-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00066-017-1257-z</a>
  9. Duffton A, Li W, Forde E. The pivotal role of the therapeutic radiographer/radiation therapist in image-guided radiotherapy research and development. Clin Oncol (R Coll Radiol) 2020; 32: 852–60. doi: <a href="https://doi.org/10.1016/j.clon.2020.09.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.clon.2020.09.009</a>
  10. Zhou J, Li S, Ye C, Shen K, Li A, Chen G, et al. Analysis of local setup errors of sub-regions in cone-beam CT-guided post-mastectomy radiation therapy. J Radiat Res 2020; 61: 457–63. doi: <a href="https://doi.org/10.1093/jrr/rraa007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jrr/rraa007</a>
  11. Dong F, Weng X, Deng X, Yang Y, Xu B, Li X. Clinical utility of a new immobilization method in image-guided intensity-modulated radiotherapy for breast cancer patients after radical mastectomy. J Xray Sci Technol 2022; 30: 641–55. doi: <a href="https://doi.org/10.3233/XST-221127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3233/XST-221127</a>
  12. Svestad JG, Heydari M, Mikalsen SG, Flote VG, Nordby F, Hellebust TP, et al. Surface-guided positioning eliminates the need for skin markers in radiotherapy of right sided breast cancer: A single center randomized crossover-trial. Radiother Oncol 2022; 177: 46–52. doi: <a href="https://doi.org/10.1016/j.radonc.2022.10.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.radonc.2022.10.017</a>
  13. Mulliez T, Gulyban A, Vercauteren T, van Greveling A, Speleers B, De Neve W, et al. Setup accuracy for prone and supine whole breast irradiation. Strahlenther Onkol 2016; 192: 254–9. doi: <a href="https://doi.org/10.1007/s00066-016-0943-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00066-016-0943-6</a>
  14. Lin, CG, Xu, SK, Yao, WY, et al. Comparison of set up accuracy among three common immobilisation systems for intensity modulated radiotherapy of nasopharyngeal carcinoma patients. J Med Radiat Sci 2016; 64: 106–13. doi: <a href="https://doi.org/10.1002/jmrs.189" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jmrs.189</a>
  15. Li B, Bai F, Yao X, Xu L, Zhao L. Clinical value of styrofoam fixation in intracranial tumor radiotherapy. Front Oncol 2023; 13: 1131006. doi: <a href="https://doi.org/10.3389/fonc.2023.1131006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fonc.2023.1131006</a>
  16. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000; 47: 1121–35. doi: <a href="https://doi.org/10.1016/s0360-3016(00)00518-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/s0360-3016(00)00518-6.</a>
  17. Mattke M, Rath D, Häfner MF, Unterhinninghofen R, Sterzing F, Debus J, et al. Individual 3D-printed fixatian masks for radiotherapy:first clinical experiences. Int J Comput Assist Radiol Surg 2021; 16: 1043–9. doi: <a href="https://doi.org/10.1007/s11548-021-02393-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11548-021-02393-2</a>
  18. Vilotte F, Antoine M, Bobin M, Latorzeff I, Supiot S, Richaud P, et al. Post-prostatectomy image-guided radiotherapy: The invisible target concept. Front Oncol 2017; 7: 34. doi:<a href="https://doi.org/10.3389/fonc.2017.00034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fonc.2017.00034</a>
  19. Zhang HJ, Zhang C, Ge RG, Liu XL, Cong XH, BL Qu, et al. Evaluation of positional error during radiotherapy for breast cancer after modified radical mas-tectomy. J Biomed Res-india 2017; 28: 7526–33. doi: <a href="https://doi.org/10.1016/j.meddos.2016.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.meddos.2016.02.002</a>
  20. Lv R, Yang G, Huang Y, Wang Y. Dosimetric effects of supine immobilization devices on the skin in intensity-modulated radiation therapy for breast cancer: a retrospective study. BMC Cancer 2021, 21: 384. doi: <a href="https://doi.org/10.1186/s12885-021-08119-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12885-021-08119-6.</a>
  21. Dinu A, Flonta T, Marcu LG. The impact of breast irradiation using thermoplastic mask on treatment delivery and acute effects. Romanian Reports in Physics 2020; 72, 603.
  22. Zhou C, Fang J, Huang X, Shi J, Ma Y. Preliminary study of accurate position fixation between polyurethane styrofoam and vacuum negative pressure pad in IMRT after radical mastectomy for breast cancer. Chin J Radiat Oncol 2019; 28: 776–9. doi: <a href="https://doi.org/10.3760/cma.j.issn.1004-4221.2019.10.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3760/cma.j.issn.1004-4221.2019.10.013</a>
  23. Fang J, Ma Y, Shi J, Huang J, Wu X, Ma S, et al. Comparison of imbolization accuracy between styrofoam and breast carrier in intensity-modulated radiotherapy after breast conservative surgery for breast cancer patients. Chin J Radiat Oncol 2019; 28: 369–72. doi: <a href="https://doi.org/10.3760/cma.j.issn.1004-4221.2019.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3760/cma.j.issn.1004-4221.2019.05.010</a>
  24. Zhang Y, Huan F, Zhu G, Zhou K, Feng X, Wan B, et al. Analysis of setup errors of postoperative intensity-modulated radiotherapy immobilized with integrated cervicothoracic board mask system in breast cancer patients. Chin J Radiat Oncol 2021; 30: 835–40. doi: <a href="https://doi.org/10.3760/cma.j.cn113030-20200229-00081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3760/cma.j.cn113030-20200229-00081</a>
  25. Shen K, Xiong J, Wang Z, Wang W, Li W, Zhou J, et al. Design of a new breast vacuum bag to reduce the global and local setup errors and to reduce PTV margin in post-mastectomy radiation therapy. J Radiat Res 2020; 61: 985–92. doi: <a href="https://doi.org/10.1093/jrr/rraa066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jrr/rraa066</a>
  26. Yao W, Liu B, Fang J, Fang Y, Xiao L, Wang Y, et al. Breast bracket combined with polyurethane Styrofoam improves the accuracy of immobilization in breast cancer radiotherapy. Chin J Radiat Oncol 2022; 31: 916–21. doi: <a href="https://doi.org/10.3760/cma.j.cn113030-20210812-00301" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3760/cma.j.cn113030-20210812-00301</a>
  27. Harron EC, McCallum HM, Lambert EL, Lee D, Lambert GD. Dosimetric effects of setup uncertainties on breast treatment delivery. Med Dosim 2008; 33: 293–8. doi: <a href="https://doi.org/10.1016/j.meddos.2008.01.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.meddos.2008.01.003</a>
  28. Boman E, Kapanen M, Laaksomaa M, Mäenpää H, Hyödynmaa S, Kellokumpu-Lehtinen PL. Treatment accuracy without rotational setup corrections in intracranial SRT. J Appl Clin Med Phys 2016, 17: 86–94. doi: <a href="https://doi.org/10.1120/jacmp.v17i4.6149" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1120/jacmp.v17i4.6149</a>
  29. Wiant D, Pursley J, Sintay B. SU-D-213CD-02: The accuracy of AlignRT guided set-up for whole breast and chestwall irradiation. J Med Phys 2012, 39(6Part3): 3617–8. doi: <a href="https://doi.org/10.1118/1.4734687" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1118/1.4734687</a>
DOI: https://doi.org/10.2478/raon-2024-0001 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 124 - 132
Submitted on: May 16, 2023
Accepted on: Aug 15, 2023
Published on: Jan 6, 2024
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jie Li, Lin Yang, Xiaowei Yao, Linlin Xu, Lina Zhao, Fei Bai, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.