References
- Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev 2019, 36: 70–87. doi: 10.1016/j.blre.2019.04.005
- Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140: 1345–77. doi: 10.1182/blood.2022016867
- Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127: 2391–405. doi: 10.1182/blood-2016-03-643544
- Fleischmann M, Schnetzke U, Hochhaus A, Scholl S. Management of acute myeloid leukemia: current treatment options and future perspectives. Cancers, 2021, 13: 5722. doi: 10.3390/cancers13225722
- Shaffer BC, Gillet JP, Patel C, Baer MR, Bates SE, Gottesman MM. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist Updat 2012, 15: 62–9. doi: 10.1016/j.drup.2012.02.001
- Wang X, Wang C, Qin YW, Yan SK, Gao YR. Simultaneous suppression of multidrug resistance and antiapoptotic cellular defense induces apoptosis in chemoresistant human acute myeloid leukemia cells. Leuk Res 2007, 31: 989–94. doi: 10.1016/j.leukres.2006.09.001
- Svirnovski AI, Shman TV, Serhiyenka TF, Savitski VP, Smolnikova VV, Fedasenka UU. ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells. Hematology 2009, 14: 204–12. doi: 10.1179/102453309X426218
- Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18: 452–64. doi: 10.1038/s41568-018-0005-8
- Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag Res 2018, 10: 403–16. doi: 10.2147/CMAR.S154608
- Wu H, Medeiros LJ, Young KH. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2018, 32: 8–28. doi: 10.1016/j.blre.2017.08.004
- Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-level dysregulation of BCL2 family genes in acute myeloblastic leukemia. Cancers 2021, 13: 3175. doi: 10.3390/cancers13133175
- Zhou JD, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Li XX, et al. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia. Diagn Pathol 2019, 14: 68. doi: 10.1186/s13000-019-0841-1.
- Tiribelli M, Michelutti A, Cavallin M, Di Giusto S, Simeone E, Fanin R, et al. BCL-2 expression in AML patients over 65 years: impact on outcomes across different therapeutic strategies. J Clin Med 2021, 10: 5096. doi: 10.3390/jcm10215096
- Richard-Carpentier G, DiNardo CD. Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy. Ther Adv Hematol 2019, 10: 2040620719882822. doi: 10.1177/2040620719882822
- Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Cancer Res 1999, 59: 1693s–700s. PMID: 10197582
- Ong YL, McMullin MF, Bailie KE, Lappin TR, Jones FG, Irvine AE. High bax expression is a good prognostic indicator in acute myeloid leukaemia. Br J Haematol 2000, 111: 182–9. doi: 10.1046/j.1365-2141.2000.02315.x
- Kornblau SM, Vu HT, Ruvolo P, Estrov Z, O’Brien S, Cortes J, et al. BAX and PKCa modulate the prognostic impact of BCL2 expression in acute myelogenous leukemia. Clin Cancer Res 2000, 6: 1401–9. PMID: 10778970
- Kohler T, Schill C, Deininger MW, Krahl R, Borchert S, Hasenclever D, et al. High Bad and BAX mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia 2002, 16: 22–9. doi: 10.1038/sj.leu.2402340
- Del Poeta G, Venditti A, Del Principe MI, Maurillo L, Buccisano F, Tamburini A, et al. Amount of spontaneous apoptosis detected by BAX/BCL2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 2003, 101: 2125–31. doi: 10.1182/blood-2002-06-1714
- Vazanova A, Jurecekova J, Balharek T, Marcinek J, Stasko J, Dzian A, et al. Differential mRNA expression of the main apoptotic proteins in normal and malignant cells and its relation to in vitro resistance. Cancer Cell Int 2018, 18: 33. doi: 10.1186/s12935-018-0528-9.
- Chen CJ, Clark D, Ueda K, Pastan I, Gottesman MM, Roninson IB. Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins. J Biol Chem 1990, 265: 506–14. PMID: 1967175
- Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KL, et al. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 1986, 324: 485–9. doi: 10.1038/324485a0
- Pallis M, Turzanski J, Higashi Y, Russell N. P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk Lymphoma 2002, 43: 1221–8. doi: 10.1080/10428190290026277
- Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–5. doi: 10.7326/0003-4819-103-4-620
- McGowan-Jordan J, Simons A, Schmid M. ISCN 2016 An International System for Human Cytogenomic Nomenclature. Basel: Karger; 2016. doi: 10.1159/isbn.978-3-318-06861-0
- Béné MC, Nebe T, Bettelheim P, Buldini B, Bumbea H, Kern W, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia 2011; 25: 567–74. doi: 10.1038/leu.2010.312
- Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 2003; 21: 4642–9. doi: 10.1200/JCO.2003.04.036
- Vucicevic K, Jakovljevic V, Colovic N, Tosic N, Kostic T, Glumac I, et al. Association of Bax expression and Bcl2/Bax ratio with clinical and molecular prognostic markers in chronic lymphocytic leukemia. J Med Biochem 2016, 35: 150–7. doi: 10.1515/jomb-2015-0017
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–8. doi: 10.1006/meth.2001.1262
- Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–8. doi: 10.1038/nprot.2008.73
- Mitrovic M, Kostic T, Virijevic M, Karan-Djurasevic T, Suvajdzic Vukovic N, Pavlovic S, et al. The influence of Wilms’ tumor 1 gene expression level on prognosis and risk stratification of acute promyelocytic leukemia patients. Int J Lab Hematol 2020, 42: 82–7. doi: 10.1111/ijlh.13144
- Kuzmanovic M, Tosic N, Colovic N, Karan-Djurasevic T, Spasovski V, Radmilovic M, et al. Prognostic impact of NPM1 mutations in Serbian adult patients with acute myeloid leukemia. Acta Haematol 2012, 128: 203–12. doi: 10.1159/000339506
- Dabrowska M, Pietruczuk M, Kostecka I, Suchowierska M, Kloczko J, Nasilowska B, et al. The rate of apoptosis and expression of Bcl-2 and Bax in leukocytes of acute myeloblastic leukemia patients. Neoplasma 2003, 50: 339–44. PMID: 14628086
- Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A. The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol 2012, 2012: 524308. doi: 10.1155/2012/524308
- Haes I, Dendooven A, Mercier ML, Puylaert P, Vermeulen K, Kockx M, et al. Absence of BCL-2 expression identifies a subgroup of AML with distinct phenotypic, molecular, and clinical characteristics. J Clin Med 2020, 9: 3090. doi: 10.3390/jcm9103090
- Andreeff M, Jiang S, Zhang X, Konopleva M, Estrov Z, Snell VE, et al. Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 1999, 13: 1881–92. doi: 10.1038/sj.leu.2401573
- Zhou JD, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Li XX, et al. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia. Diagn Pathol 2019, 14: 68. doi: 10.1186/s13000-019-0841-1
- Bilbao-Sieyro C, Rodríguez-Medina C, Florido Y, Stuckey R, Sáez MN, Sánchez-Sosa S, et al. BCL2 expression at post-induction and complete remission impact outcome in acute myeloid leukemia. Diagnostics 2020, 10: 1048. doi: 10.3390/diagnostics10121048
- Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in acute myeloid leukemia patients. Cancer Discov 2020, 10: 536–51. doi: 10.1158/2159-8290.CD-19-0710
- Kuusanmäki H, Leppä AM, Pölönen P, Kontro M, Dufva O, Deb D, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica 2020, 105: 708–20. doi: 10.3324/haematol.2018.214882
- Del Poeta G, Ammatuna E, Lavorgna S, Capelli G, Zaza S, Luciano F, et al. The genotype nucleophosmin mutated and FLT3-ITD negative is characterized by high bax/bcl-2 ratio and favourable outcome in acute myeloid leukaemia. Br J Haematol 2010, 149: 383–7. doi: 10.1111/j.1365-2141.2010.08098.x
- Sharawat SK, Bakhshi R, Vishnubhatla S, Gupta R, Bakhshi S. BAX/BCL2 RMFI ratio predicts better induction response in pediatric patients with acute myeloid leukemia. Pediatr Blood Cancer 2013, 60: E63–6. doi: 10.1002/pbc.24518
- Huls M, Russel FG, Masereeuw R. The role of ATP binding cassette transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther 2009, 328: 3–9. doi: 10.1124/jpet.107.132225
- Schaich M, Soucek S, Thiede C, Ehninger G, Illmer T; SHG AML96 Study Group. MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol 2005, 128: 324–32. doi: 10.1111/j.1365-2141.2004.05319.x
- van den Heuvel-Eibrink MM, van der Holt B, Burnett AK, Knauf WU, Fey MF, Verhoef GE, et al. CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age. Ann Hematol 2007, 86: 329–37. doi: 10.1007/s00277-007-0269-7
- Shman TV, Fedasenka UU, Savitski VP, Aleinikova OV. CD34+ leukemic subpopulation predominantly displays lower spontaneous apoptosis and has higher expression levels of Bcl-2 and MDR1 genes than CD34-cells in childhood AML. Ann Hematol 2008, 87: 353–60. doi: 10.1007/s00277-008-0439-2
- Varatharajan S, Abraham A, Karathedath S, Ganesan S, Lakshmi KM, Arthur N, et al. ATP-binding cassette transporter expression in acute myeloid leukemia: association with in vitro cytotoxicity and prognostic markers. Pharmacogenomics 2017, 18: 235–44. doi: 10.2217/pgs-2016-0150
- Hirsch P, Tang R, Marzac C, Perrot JY, Fava F, Bernard C, et al. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC. Haematologica 2012, 97: 241–5. doi: 10.3324/haematol.2010.034447
- Marzac C, Teyssandier I, Calendini O, Perrot JY, Faussat AM, Tang R, et al. Flt3 internal tandem duplication and P-glycoprotein functionality in 171 patients with acute myeloid leukemia. Clin Cancer Res 2006, 12: 7018–24. doi: 10.1158/1078-0432.CCR-06-0641
- Smeets ME, Raymakers RA, Vierwinden G, Pennings AH, Wessels H, de Witte T. Triggering noncycling hematopoietic progenitors and leukemic blasts to proliferate increases anthracycline retention and toxicity by down-regulating multidrug resistance. Blood 1999, 94: 2414–23. doi: 10.1182/blood.V94.7.2414.417k01_2414_2423
- Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997 89: 3323–9. doi: 10.1182/blood.V89.9.3323
- Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999, 94: 1086–99. doi: 10.1182/blood.V94.3.1086.415k32_1086_1099
- Steinbach D, Furchtbar S, Sell W, Lengemann J, Hermann J, Zintl F, et al. Contrary to adult patients, expression of the multidrug resistance gene (MDR1) fails to define a poor prognostic group in childhood AML. Leukemia 2003, 17: 470–1. doi: 10.1038/sj.leu.2402806
- Marzac C, Garrido E, Tang R, Fava F, Hirsch P, De Benedictis C, et al. ATP binding cassette transporters associated with chemoresistance: transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients. Haematologica 2011, 96: 1293–301. doi: 10.3324/haematol.2010.031823
- Bartholomae S, Gruhn B, Debatin KM, Zimmermann M, Creutzig U, Reinhardt D, et al. Coexpression of multiple ABC-transporters is strongly associated with treatment response in childhood acute myeloid leukemia. Pediatr Blood Cancer 2016, 63: 242–7. doi: 10.1002/pbc.25785
- Galimberti S, Guerrini F, Carulli G, Fazzi R, Palumbo GA, Morabito F, et al. Significant co-expression of WT1 and MDR1 genes in acute myeloid leukemia patients at diagnosis. Eur J Haematol 2004, 72: 45–51. doi: 10.1046/j.0902-4441.2003.00185.x
- Guo X, Shi P, Chen F, Zha J, Liu B, Li R, et al. Low MDR1 and BAALC expression identifies a new subgroup of intermediate cytogenetic risk acute myeloid leukemia with a favorable outcome. Blood Cells Mol Dis 2014, 53: 144–8. doi: 10.1016/j.bcmd.2014.05.001
- Liu B, Li LJ, Gong X, Zhang W, Zhang H, Zhao L. Co-expression of ATP binding cassette transporters is associated with poor prognosis in acute myeloid leukemia. Oncol Lett 2018, 15: 6671–7. doi: 10.3892/ol.2018.8095