References
- Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. BioMed Eng Online 2014; 13: 1-20. doi: 10.1186/1475-925X-13-29
- Campana LG, Miklavčič D, Bertino G, Marconato R, Valpione S, Imarisio I, M, et al. Electrochemotherapy of superficial tumors – Current status: basic principles, operating procedures, shared indications, and emerging applications. Semin Oncol 2019; 46: 173-91. doi: 10.1053/j.seminoncol.2019.04.002
- Gehl J, Sersa G, Matthiessen LW, Muir T, Soden D, Occhini A, Quaglino P, et al. Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncol 2018; 57: 874-82. doi: 10.1080/0284186X.2018.1454602
- Kendler M, Micheluzzi M, Wetzig T, Simon JC. Electrochemotherapy under tumescent local anesthesia for the treatment of cutaneous metastases. Dermatologic Surg 2013; 39: 1023-32. doi: 10.1111/dsu.12190
- Schoenbach KH, Beebe SJ, Buescher ES. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 2001; 22: 440-8. doi: 10.1002/bem.71
- Pliquett U, Nuccitelli R. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields. Bioelectrochemistry 2014; 100: 62-8. doi: 10.1016/j.bioelechem.2014.03.001
- Cornelis FH, Cindrič H, Kos B, Fujimori M, Petre EN, Miklavčič D, et al. Peritumoral metallic implants reduce the efficacy of irreversible electroporation for the ablation of colorectal liver metastases. Cardiovas Intervent Radiol 2020; 43: 84-93. doi: 10.1007/s00270-019-02300-y
- Vižintin A, Marković S, Ščančar J, Miklavčič D. Electroporation with nanosecond pulses and bleomycin or cisplatin results in efficient cell kill and low metal release from electrodes. Bioelectrochemistry 2021; 140: 107898. doi: 10.1016/j.bioelechem.2021.107798
- Saulis G, Rodaite R, Rodaitė-Riševičienė R, Dainauskaitė VS, Saulė R. Electrochemical processes during high-voltage electric pulses and their importance in food processing technology. In: Rai VR, editor. Advances in food biotechnology. First Edition. Wiley Online Books, John Wiley & Sons Ltd; 2016. p. 575-92.
- Kotnik T, Miklavčič D, Mir LM. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: Part II. Reduced electrolytic contamination. Bioelectrochemistry 2001; 54: 91-5. doi: 10.1016/S1567-5394(01)00115-3
- Loomis-Husselbee JW, Cullen PJ, Irvine RF, Dawson AP. Electroporation can cause artefacts due to solubilization of cations from the electrode plates. Aluminum ions enhance conversion of inositol 1,3,4,5-tetrakisphosphate into inositol 1,4,5-trisphosphate in electroporated L1210 cells. Biochem J 1991; 277(Pt 3): 883-5. doi: 10.1042/bj2770883
- Long G, Shires PK, Plescia D, Beebe SJ, Kolb JF, Schoenbach KH. Targeted tissue ablation with nanosecond pulses. IEEE Trans Biomed Eng 2011; 58: 2161-7. doi: 10.1109/TBME.2011.2113183
- Rogers WR, Merritt JH, Comeaux JA, Kuhnel CT, Moreland DF, Teltschik DG, et al. Strength-duration curve an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans on Plasma Sci 2004; 32: 1587-99. doi: 10.1109/TPS.2004.831758
- Pakhomov AG, Pakhomova ON. The interplay of excitation and electroporation in nanosecond pulse stimulation. Bioelectrochemistry 2020; 136: 107598. doi: 10.1016/j.bioelechem.2020.107598
- Gudvangen EK, Kondratiev O, Redondo L, Xiao S, Pakhomov AG. Peculiarities of neurostimulation by intense nanosecond pulsed electric fields: how to avoid firing in peripheral nerve fibers. Int J Mol Sci 2021; 22: 1763. doi: 10.3390/ijms22137051
- Gudvangen EK, Novickij V, Battista F, Pakhomov AG. Electroporation and cell killing by milli-to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci Rep 2022; 12: 1-15. doi: 10.1038/s41598-022-04868-x
- Silve A, Leray I, Mir LM. Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 2012; 87: 260-4. doi: https://doi.org/10.1016/j.bioelechem.2011.10.002
- Tunikowska J, Antończyk A, Rembiałkowska N, Jóźwiak Ł, Novickij V, Kulbacka J. The first application of nanoelectrochemotherapy in feline oral malignant melanoma treatment – case study. Animals 2020; 10: 556. doi: 10.3390/ani10040556
- Novickij V, Malyško V, Želvys A, Balevičiūte A, Zinkevičiene A, Novickij J, et al. Electrochemotherapy using doxorubicin and nanosecond electric field pulses: a pilot in vivo study. Molecules 2020; 25: 4601. doi: 10.3390/molecules25204601
- Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, et al. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep 2021; 11: 1-10. doi: 10.1038/s41598-021-95180-7
- Kulbacka J, Rembiałkowska N, Szewczyk A, Moreira H, Szyjka A, Girkontaitė I, et al. The impact of extracellular Ca2+ and nanosecond electric pulses on sensitive and drug-resistant human breast and colon cancer cells. Cancers 2021; 13: 3216. doi: 10.3390/cancers13133216
- R Core Team R. A language and environment for statistical computing. [internet]. 2018. Available at: https://www.r-project.org/
- Berners-Price SJ, Appleton TG. The chemistry of cisplatin in aqueous solution. In: Kelland LR, Farrell NP, editors. Platinum-based drugs in cancer therapy. Cancer drug discovery and development. Totowa, NJ: Humana Press; 2000. p. 3-35. doi: 10.1007/978-1-59259-012-4_1
- Chen Y, Guo Z, Sadler PJ. 195Pt- and 15N-NMR spectroscopic studies of cisplatin reactions with biomolecules. In: Lippert B, editor. Cisplatin. Chemistry and biochemistry of a leading anticancer drug. Wiley Online Library. p. 293-318. doi: 10.1002/9783906390420.ch11
- Cui M, Mester Z. Electrospray ionization mass spectrometry coupled to liquid chromatography for detection of cisplatin and its hydrated complexes. Rapid Commun Mass Spectrom 2003; 17: 1517-27. doi: 10.1002/rcm.1030
- Feifan X, Pieter C, Jan VB. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin: implications for the hydrolysis process of platinum complexes. J Mass Spectrom 2017; 52: 434-41. doi: https://doi.org/10.1002/jms.3940
- Du Y, Zhang N, Cui M, Liu Z, Liu S. Investigation on the hydrolysis of the anticancer drug cisplatin by Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 2012; 26: 2832-6. doi: https://doi.org/10.1002/rcm.6408
- Cui M, Ding L, Mester Z. Separation of cisplatin and its hydrolysis products using electrospray ionization high-field asymmetric waveform ion mobility spectrometry coupled with ion trap mass spectrometry. Anal Chem 2003; 75: 5847-53. doi: 10.1021/ac0344182
- Arena CB, Sano MB, Rossmeisl Jr JH, Caldwell JL, Garcia PA, Rylander MN, et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. BioMed Eng Online e 2011; 10: 102. doi: 10.1186/1475-925X-10-102
- Scuderi M, Reberšek M, Miklavčič D, Dermol-Černe J. The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro. Radiol Oncol 2019; 53: 194-205. doi: 10.2478/raon-2019-0025
- Pirc E, Miklavčič D, Uršič K, Serša G, Reberšek M. High-frequency and high-voltage asymmetric bipolar pulse generator for electroporation based technologies and therapies. Electronics 2021; 10: doi: 10.3390/electronics10101203
- Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 2019; 53: 148-58. doi: 10.2478/raon-2019-0018
- Hucke A, Ciarimboli G. The role of transporters in the toxicity of chemotherapeutic drugs: focus on transporters for organic cations. J Clin Pharmacol 2016; 56(Suppl 7): S157-72. doi: 10.1002/jcph.706
- Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys 2019; 48: 63-91. doi: 10.1146/annurev-biophys-052118-115451
- Ursic K, Kos S, Kamensek U, Cemazar M, Scancar J, Bucek S, Kranjc S, Staresinic B, Sersa G. Comparable effectiveness and immunomodulatory actions of oxaliplatin and cisplatin in electrochemotherapy of murine melanoma. Bioelectrochemistry 2018; 119: 161-71. doi: 10.1016/j.bioelechem.2017.09.009
- Zakelj MN, Prevc A, Kranjc S, Cemazar M, Todorovic V, Savarin M, et al. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep 2019; 41: 1658-68. doi: 10.3892/or.2019.6960
- Zhang L, Ye Y, Zhang X, Li X, Chen Q, Sun JCW. Cisplatin under oriented external electric fields: a deeper insight into electrochemotherapy at the molecular level. Int J Quantum Chem 2020; 121: e26578. doi: 10.1002/qua.26578
- Cemază r M, Miklavcĭc ̆ D, Šc̆ăncă r J, Dolză n V, Golouh R, Sersă G. Increased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatin. Br J Cancer 1999; 79: 1386-91. doi: 10.1038/sj.bjc.6690222
- Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011; 3: 1351-71. doi: 10.3390/cancers3011351
- Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaite-Riševičiene R, Saulis G, Xiao S, et al. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 2012; 527: 55-64. doi: 10.1016/j.abb.2012.08.004
- Szlasa W, Kiełbik A, Szewczyk A, Rembiałkowska N, Novickij V, Tarek M, et al. Oxidative effects during irreversible electroporation of melanoma cells – in vitro study. Molecules 2021; 26: doi: 10.3390/molecules26010154
- Batista Napotnik T, Wu Y-H, Gundersen MA, Miklavčič D, Vernier PT. Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 2012; 33: 257-64. doi: 10.1002/bem.20707
- Nuccitelli R, McDaniel A, Connolly R, Zelickson B, Hartman H. Nano-pulse stimulation induces changes in the intracellular organelles in rat liver tumors treated in situ. Lasers Surg Med 2020; 52: 882-9. doi: 10.1002/lsm.23239
- Semenov I, Xiao S, Pakhomov AG. Primary pathways of intracellular Ca2 + mobilization by nanosecond pulsed electric field. Biochim Biophys Acta - Biomembr 2013; 1828: 981-9. doi: 10.1016/j.bbamem.2012.11.032
- Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res 2012; 72: 1336-41. doi: 10.1158/0008-5472.CAN-11-3782
- Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, et al. Cisplatin induces a mitochondrial-ros response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 2013; 8: 1-15. doi: 10.1371/journal.pone.0081162
- Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, et al. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis 2019; 10: 31-59. doi: 10.1038/s41419-019-2081-4
- Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M. Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci 2006; 100: 65-72. doi: 10.1254/jphs.FP0050661
- Al-Taweel N, Varghese E, Florea A-M, Büsselberg D. Cisplatin (CDDP) triggers cell death of MCF-7 cells following disruption of intracellular calcium ([Ca2+] i) homeostasis. J Toxicol Sci 2014; 39: 765-74. doi: 10.2131/jts.39.765
- Gualdani R, de Clippele M, Ratbi I, Gailly P, Tajeddine N. Store-operated calcium entry contributes to cisplatin-induced cell death in non-small cell lung carcinoma. Cancers 2019; 11: 2023. doi: 10.3390/cancers11030430
- Michel O, Kulbacka J, Saczko J, Mączyńska J, Błasiak P, Rossowska J, et al. Electroporation with cisplatin against metastatic pancreatic cancer: in vitro study on human primary cell culture. Biomed Res Int 2018; 2018: 7364539. doi: 10.1155/2018/7364539
- Speelmans G, Sips WHHM, Grisel RJH, Staffhorst RWHM, Fichtinger-Schepman AMJ, Reedijk J, et al. The interaction of the anti-cancer drug cisplatin with phospholipids is specific for negatively charged phospholipids and takes place at low chloride ion concentration. Biochim Biophys Acta - Biomembr 1996; 1283: 60-6. doi: 10.1016/0005-2736(96)00080-6