Have a personal or library account? Click to login
The dose accumulation and the impact of deformable image registration on dose reporting parameters in a moving patient undergoing proton radiotherapy Cover

The dose accumulation and the impact of deformable image registration on dose reporting parameters in a moving patient undergoing proton radiotherapy

Open Access
|May 2022

References

  1. Pedroni E, Bacher R, Blattmann H, Bohrinaer T, Coray A, Lomax A, et al. The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys 1995; 22: 37-53. doi: 10.1118/1.597522
  2. Degiovanni A, Amaldi U. History of hadron therapy accelerators. Phys Medica 2015; 31: 322-32. doi: 10.1016/j.ejmp.2015.03.002.
  3. Terasawa T, Dvorak T, Ip S, Raman G, Lau J, Trikalinos TA. Systematic review: charged-particle radiation therapy for cancer. Ann Intern Med 2009; 151: 556-65. doi: 10.7326/0003-4819-151-8-200910200-00145
  4. Verma V, Rwigema J-CM, Malyapa RS, Regine WF, Simone CB. Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation. Radiother Oncol 2017; 125: 21-30. doi: 10.1016/j.radonc.2017.08.005
  5. Liao Z, Lee JJ, Komaki R, Gomez DR, O’Reilly MS, Fossella FV, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer. J Clin Oncol 2018; 36: 1813-22. doi: 10.1200/JCO.2017.74.0720
  6. Jones B. Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models. Cancers 2015; 7: 460-80. doi: 10.3390/cancers7010460
  7. Hu M, Jiang L, Cui X, Zhang J, Yu J. Proton beam therapy for cancer in the era of precision medicine. J Hematol Oncol 2018; 11: 136. doi: 10.1186/s13045-018-0683-4
  8. Kissick MW, Boswell SA, Jeraj R, Mackie TR. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion. Med Phys 2005; 32: 2346-50. doi: 10.1118/1.1935774
  9. Yu CX, Jaffray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998; 43: 91-104. doi: 10.1088/0031-9155/43/1/006
  10. Engelsman M, Schwarz M, Dong L. Physics controversies in proton therapy. Semin Radiat Oncol 2013; 23: 88-96. doi: 10.1016/j.semradonc.2012.11.003
  11. Sonke JJ, Zijp L, Remeijer P, Van Herk M. Respiratory correlated cone beam CT. Med Phys 2005; 32: 1176-86. doi: 10.1118/1.1869074
  12. Widesott L, Amichetti M, Schwarz M. Proton therapy in lung cancer: clinical outcomes and technical issues. A systematic review. Radiother Oncol 2008; 86: 154-64. doi: 10.1016/j.radonc.2008.01.003
  13. De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour movement in proton therapy: solutions and remaining questions: a review. Cancers 2015; 7: 1143-53. doi: 10.3390/cancers7030829
  14. Moteabbed M, Schuemann J, Paganetti H. Dosimetric feasibility of real-time MRI-guided proton therapy. Med Phys 2014; 41: 111713. doi: 10.1118/1.4897570
  15. Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided radiotherapy will be MR guided. Br J Radiol 2017; 90: 20160667. doi: 10.1259/bjr.20160667
  16. Padilla-Cabal F, Georg D, Fuchs H. A pencil beam algorithm for magnetic resonance image-guided proton therapy. Med Phys 2018; 45: 2195-204. doi: 10.1002/mp.12854
  17. Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, et al. Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM Therapy Physics Committee Task Group 180. Med Phys 2018; 45: e84-99. doi: 10.1002/mp.12824
  18. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 2003; 48: 45-62. doi: 10.1088/00319155/48/1/304
  19. Pan T, Lee T-Y, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004; 31: 333-40. doi: 10.1118/1.1639993
  20. Malicki J. The importance of accurate treatment planning, delivery, and dose verification. Reports Pract Oncol Radiother 2012; 17: 63-5. doi: 10.1016/j.rpor.2012.02.001
  21. Gregoire V, MacKie TR. Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83. Imaging Med 2011; 3: 367-73. doi: 10.2217/IIM.11.22
  22. Jones D, Suit H, Kanematsu N, Tatsuzaki H, Tsujii H. Recording, and reporting proton-beam therapy ICRU Report 78. [Internet]. J ICRU 2007; 7: 1-210. [cited 2021 Mar 15]. Available at : https://www.icru.org/report/prescribing-recording-and-reporting-proton-beam-therapy-icru-report-78/
  23. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol 1997; 42: 123-32. doi: 10.1088/0031-9155/42/1/008
  24. Dolde K, Naumann P, David C, Gnirs R, Kachelrieß M, Lomax AJ, et al. 4D dose calculation for pencil beam scanning proton therapy of pancreatic cancer using repeated 4DMRI datasets. Phys Med Biol 2018; 63: 165005. doi: 10.1088/1361-6560/aad43f
  25. European Commission. CORDIS EU research results. Real-time Adaptive Particle Therapy of Cancer. RAPTOR [Internet]. [cited 2021 Mar 16]. Available at: https://cordis.europa.eu/project/id/955956
  26. Zhong H, Jin J-Y. Recent advances and challenges in adaptive radiotherapy for patients with locally advanced NSCLC. Ann Radiat Ther Oncol 2017; 1: 1008. doi: 10.25107/2577-8757/arto-v1-id1008
  27. Castillo R, Castillo E, Guerra R, Johnson VE, McPhail T, Garg AK, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol 2009; 54: 1849-70. doi: 10.1088/0031-9155/54/7/001
  28. Castillo R. The deformable image registration laboratory. [Internet]. [cited 2021 Mar 17]. Available at: http://www.dir-lab.com/
  29. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006. doi: 10.1038/ncomms5006
  30. Nationa Cancer Institute. Cancer Imaging program. The cancer imaging archive [Internet]. [cited 2021 Mar 18]. Available at: https://www.cancer-imagingarchive.net/
  31. Teoh S, Fiorini F, George B, Vallis KA, Van den Heuvel F. Proton vs photon: a model-based approach to patient selection for reduction of cardiac toxicity in locally advanced lung cancer. Radiother Oncol 2020; 152: 151-62. doi: 10.1016/j.radonc.2019.06.032
  32. Mashnik SG. Stepan G. Validation and verification of MCNP6 as a new simulation tool useful for medical applications. [Internet]. 44th Annu Midyear Meet Heal Phys Soc 2011, Charleston, SC (United States); 6 Jan 2011; 24 p; Report No. LA-UR-11-00083. Avalable at: https://inis.iaea.org/search/search.aspx?orig_q=RN:43119331
  33. Ardenfors O, Dasu A, Kopeć M, Gudowska I. Modelling of a proton spot scanning system using MCNP6. J Phys Conf Ser 2017; 860: 012025. doi: 10.1088/1742-6596/860/1/012025.
  34. Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ, et al. Features of MCNP6. Ann Nucl Energy 2016; 87: 772-83. doi: 10.1016/j.anucene.2015.02.020
  35. Schneider W, Bortfeld T, Schlegl W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulation of clinical dose distributions. Phys Med Biol 2000; 45: 459-78. doi: 10.1088/0031-9155/45/2/314
  36. Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol 1996; 41: 111-24. doi: 10.1088/0031-9155/41/1/009
  37. Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 2012; 57: R99-117. doi: 10.1088/0031-9155/57/11/R99
  38. The Mathworks, Inc. MATLAB. version 9.3.0.713579 (R2017b). 2017. Natick, Massachusetts; 2017.
  39. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010; 29: 196-205. doi: 10.1109/TMI.2009.2035616
  40. Staring M, Bakker ME, Stolk J, Shamonin DP, Reiber JH, Stoel BC. Towards local progression estimation of pulmonary emphysema using CT. Med Phys 2014; 41: 021905. doi: 10.1118/1.4851535
  41. Guy CL, Weiss E, Christensen GE, Jan N, Hugo GD. CALIPER: a deformable image registration algorithm for large geometric changes during radiotherapy for locally advanced non-small cell lung cancer. Med Phys 2018; 45: 2498508. doi: 10.1002/mp.12891
  42. Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Proc SPIE Med Imaging 2001; 4322: 1609-20. doi: 10.1117/12.431046
  43. Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT. Radiation therapy research toolkit for 3D Slicer. Med Phys 2012; 39: 6332-8. doi: 10.1118/1.4754659
  44. Gregoire V, Mackie TR, De Neve W, Gospodarowicz M, van Herk M, Niemierko A. Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT) ICRU Report 83. J ICRU 2010; 10: 1-35. doi: 10.1093/jicru/ndq001
  45. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998; 25: 656-61. doi: 10.1118/1.598248
  46. Amstutz F, Nenoff L, Albertini F, Ribeiro CO, Knopf AC, Unkelbach J, et al. An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer. Phys Med Biol 2021; 66: 105007. doi: 10.1088/1361-6560/abf8f5
  47. Schultheiss TE, Tome WA, Orton CG. Point/counterpoint: it is not appropriate to “deform” dose along with deformable image registration in adaptive radiotherapy. Med Phys 2012; 39: 6531-3. doi: 10.1118/1.4722968
  48. Schaly B, Kempe J, Venkatesan V, Mitchell S, Battista JJ. Using gamma index to flag changes in anatomy during image-guided radiation therapy of head and neck cancer. J Appl Clin Med Phys 2017; 18: 79-87. doi: 10.1002/acm2.12180
  49. Houweling AC, Crama K, Visser J, Fukata K, Rasch CRN, Ohno T, et al. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Phys Med Biol 2017; 62: 3051-64. doi: 10.1088/1361-6560/aa6419
  50. Rehfeld NS, Stute S, Apostolakis J, Soret M, Buvat I. Introducing improved voxel navigation and fictitious interaction tracking in GATE for enhanced efficiency. Phys Med Biol 2009; 54: 2163-78. doi: 10.1088/0031-9155/54/7/021
  51. Yuan J, Chen Q, Brindle J, Zheng Y, Lo S, Sohn J, et al. Investigation of nonuniform dose voxel geometry in Monte Carlo calculations. Technol Cancer Res Treat 2015; 14: 419-27. doi: 10.1177/1533034614547459
  52. Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy. Med Phys 2012; 39: 1079-91. doi: 10.1118/1.3679340
  53. Yan S, Depauw N, Flanz J, Adams J, Gorissen BL, Shih H, et al. SU-F-T-207: does the greater flexibility of pencil beam scanning reduce the need for a proton gantry? Med Phys 2016; 43: 3509-10. doi:10.1118/1.4956345
  54. Graeff C, Lüchtenborg R, Eley JG, Durante M, Bert C. A 4D-optimization concept for scanned ion beam therapy. Radiother Oncol 2013; 109: 419-24. doi: 10.1016/j.radonc.2013.09.018
  55. Nenoff L, Ribeiro CO, Matter M, Hafner L, Josipovic M, Langendijk JA, et al. Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother Oncol 2020; 147: 178-85. doi: 10.1016/j.radonc.2020.04.046
DOI: https://doi.org/10.2478/raon-2022-0016 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 248 - 258
Submitted on: Apr 11, 2021
Accepted on: Feb 18, 2022
Published on: May 17, 2022
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Gasper Razdevsek, Urban Simoncic, Luka Snoj, Andrej Studen, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.