Have a personal or library account? Click to login
Cancer gene therapy goes viral: viral vector platforms come of age Cover

Cancer gene therapy goes viral: viral vector platforms come of age

By: Urban Bezeljak  
Open Access
|Feb 2022

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71: 7-33. doi: 10.3322/caac.21654
  2. Eurostat. Cancer statistics - statistics explained. [cited 2021 Nov 18]. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cancer_statistics#Deaths_from_cancer
  3. Zadnik V, Zagar T, Lokar K, Tomsic S, Konjevic AD, Zakotnik B. Trends in population-based cancer survival in Slovenia. Radiol Oncol 2021; 55: 42-9. doi: 10.2478/raon-2021-0003
  4. Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4: 218-27. doi: 10.3121/cmr.4.3.218
  5. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 1-25. doi: 10.3389/fonc.2019.00297
  6. Sheridan C. Gene therapy finds its niche. Nat Biotechnol 2011; 29: 121-8. doi: 10.1038/nbt.1769
  7. Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 2015; 17: 63-89. doi: 10.1146/annurev-bioeng-071813-104938
  8. Daley J. Gene therapy arrives. Nature 2019; 576: S12-3. doi: 10.1038/d41586-019-03716-9
  9. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021; 384: 2187-201. doi: 10.1056/NEJMoa2101544
  10. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397: 99-111. doi: 10.1016/S0140-6736(20)32661-1
  11. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 2018; 20: 1-16. doi: 10.1002/jgm.3015
  12. Dock G. The influence of compliting disease upon leukaemia. Am J Med Sci 1904; 127: 563-92.
  13. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007; 15: 651-9. doi: 10.1038/sj.mt.6300108
  14. Miest TS, Cattaneo R. New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 2014; 12: 23-34. doi: 10.1038/nrmicro3140
  15. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6: 53. doi: 10.1038/s41392-021-00487-6
  16. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021; 21: 360-78. doi: 10.1038/s41568-021-00346-0
  17. Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29: 1668-82. doi: 10.1016/j.ymthe.2021.04.015
  18. Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med 2014; 65: 333-47. doi: 10.1146/annurev-med-060512-150254
  19. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18: 85-100. doi: 10.1038/s41571-020-0426-7
  20. Shaw AR, Suzuki M. Immunology of adenoviral vectors in cancer therapy. Mol Ther Methods Clin Dev 2019; 15: 418-29. doi: 10.1016/j. omtm.2019.11.001
  21. McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 2004; 15: 1022-33. doi: 10.1089/hum.2004.15.1022
  22. Wold WSM, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2013; 13: 421-33. doi: 10.2174/1566 523213666131125095046
  23. Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016-27. doi: 10.1089/hum.2005.16.1016
  24. Wang D, Wang K, Cai Y. An overview of development in gene therapeutics in China. Gene Ther 2020; 27: 338-48. doi: 10.1038/s41434-020-0163-7
  25. Westphal M, Ylä-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, et al Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14: 823-33. doi: 10.1016/S1470-2045(13)70274-2
  26. European Medicines Agency. Ark Therapeutics Ltd withdraws its marketing authorisation application for Cerepro (sitimagene ceradenovec). [cited 2021 Dec 21]. Available at: https://www.ema.europa.eu/en/news/ark-therapeutics-ltd-withdraws-its-marketing-authorisation-application-cerepro-sitimagene
  27. Kulkarni GS. Nadofaragene firadenovec: a new gold standard for BCG-unresponsive bladder cancer? Lancet Oncol 2021; 22: 8-9. doi: 10.1016/S1470-2045(20)30586-6
  28. Boorjian SA, Alemozaffar M, Konety BR, Shore ND, Gomella LG, Kamat AM, et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol 2021; 22: 107-17. doi: 10.1016/S1470-2045(20)30540-4
  29. Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One 2012; 7: e40385. doi: 10.1371/journal.pone.0040385
  30. Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20: 832-41. doi: 10.1016/S1474-4422(21)00251-9
  31. Cappuccini F, Bryant R, Pollock E, Carter L, Verrill C, Hollidge J, et al. Safety and immunogenicity of novel 5T4 viral vectored vaccination regimens in early stage prostate cancer: a phase I clinical trial. J Immunother Cancer 2020; 8: 1-13. doi: 10.1136/jitc-2020-000928
  32. Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and immunotherapy: advancing cancer treatment by combination. Cancers 2020; 12: 1295. doi: 10.3390/cancers12051295
  33. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4: 43-63. doi: 10.1016/j.gendis.2017.04.001
  34. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224-32. doi: 10.1128/JVI.72.3.2224-2232.1998
  35. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1: 427-51. doi: 10.1146/annurev-virology-031413-085355
  36. Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 75-80. doi: 10.1016/j.coviro.2016.08.003
  37. Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20: 832-41. doi: 10.1016/S1474-4422(21)00251-9
  38. Challis RC, Ravindra Kumar S, Chan KY, Challis C, Beadle K, Jang MJ, et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc 2019; 14: 379-414. doi: 10.1038/s41596-018-0097-3
  39. Xu X, Chen W, Zhu W, Chen J, Ma B, Ding J, et al. Adeno-associated virus (AAV)-based gene therapy for glioblastoma. Cancer Cell Int 2021; 21: 1-10. doi: 10.1186/s12935-021-01776-4
  40. Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240: 287-301. doi: 10.1016/j. jconrel.2016.01.001
  41. Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards clinical implementation of adeno-associated virus (AAV) vectors for cancer gene therapy: current status and future perspectives. Cancers 2020; 12: 1-30. doi: 10.3390/cancers12071889
  42. Münch RC, Janicki H, Völker I, Rasbach A, Hallek M, Büning H, et al. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther 2013; 21: 109-18. doi: 10.1038/mt.2012.186
  43. Reul J, Frisch J, Engeland CE, Thalheimer FB, Hartmann J, Ungerechts G, et al Tumor-specific delivery of immune checkpoint inhibitors by engineered AAV vectors. Front Oncol 2019; 9: 52. doi: 10.3389/fonc.2019.00052
  44. Münch RC, Muth A, Muik A, Friedel T, Schmatz J, Dreier B, et al Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun 2015; 6: 6246. doi: 10.1038/ncomms7246
  45. MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, et al Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther 2017; 25: 949-61. doi: 10.1016/j.ymthe.2017.02.005
  46. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017; 543: 113-7. doi: 10.1038/nature21405
  47. Nawaz W, Huang B, Xu S, Li Y, Zhu L, Yiqiao H, et al AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J 2021; 11: 119. doi: 10.1038/s41408-021-00508-1
  48. Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 2020; 181: 136-50. doi: 10.1016/j.cell.2020.03.023
  49. Ibraheim R, Tai PWL, Mir A, Javeed N, Wang J, Rodríguez TC, et al. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 2021; 12: 6267. doi: 10.1038/s41467-021-26518-y
  50. Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X, et al. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett 2018; 431: 171-81. doi: 10.1016/j. canlet.2018.05.042
  51. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199: 381-90. doi: 10.1086/595830
  52. Venditti CP. Safety questions for AAV gene therapy. Nat Biotechnol 2021; 39: 24-6. doi: 10.1038/s41587-020-00756-9
  53. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28: 709-22. doi: 10.1016/j. ymthe.2020.01.001
  54. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263-7. doi: 10.1126/science.272.5259.263
  55. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007; 36: 184-204. doi: 10.1007/s12033-007-0010-8
  56. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32: 1529-41. doi: 10.1038/s41375-018-0106-0
  57. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463-71. doi: 10.1128/jvi.72.11.8463-8471.1998
  58. Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 2000; 7: 20-3. doi: 10.1038/sj.gt.3301105
  59. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348-53. doi: 10.1038/nm1365
  60. Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, et al Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and vivo. Proc Natl Acad Sci U S A 2006; 103: 17684-9. doi: 10.1073/pnas.0606197103
  61. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38. doi: 10.1126/scitranslmed.3005930
  62. Vairy S, Garcia JL, Teira P, Bittencourt H. CTL019 (Tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Devel Ther 2018; 12: 3885-98. doi: 10.2147/DDDT.S138765
  63. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2017; 4: 92-101. doi: 10.1016/j. omtm.2016.12.006
  64. Levine BL. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 2015; 22: 79-84. doi: 10.1038/cgt.2015.5
  65. Somaiah N, Block MS, Kim JW, Shapiro GI, Do KT, Hwu P, et al First-in-class, first-in-human study evaluating LV305, a dendritic-cell tropic lentiviral vector, in sarcoma and other solid tumors expressing NY-ESO-1. Clin Cancer Res 2019; 25: 5808-17. doi: 10.1158/1078-0432.CCR-19-1025
  66. Kochenderfer JN, Feldman SA, Zhao Y, Xu H, Black MA, Morgan RA, et al Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 2009; 32: 689-702. doi: 10.1097/CJI.0b013e3181ac6138
  67. Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T, Galvão da Silva AP, et al. Brain tumor eradication and prolonged survival from in-tratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol 2012; 14: 145-59. doi: 10.1093/neuonc/nor199
  68. Cloughesy TF, Petrecca K, Walbert T, Butowski N, Salacz M, Perry J, et al. Effect of vocimagene amiretrorepvec in combination with Flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol 2020; 6: 1939-46. doi: 10.1001/jamaoncol.2020.3161
  69. Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther 2021; 28: 513-27. doi: 10.1038/s41434-021-00246-w
  70. Pikor LA, Bell JC, Diallo JS. Oncolytic viruses: Exploiting cancer’s deal with the devil. Trends in Cancer 2015; 1: 266-77. doi: 10.1016/j.trecan.2015.10.004
  71. Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer 2018; 18: 419-32. doi: 10.1038/s41568-018-0009-4
  72. Russell SJ, Peng KW. Oncolytic virotherapy: a contest between apples and oranges. Mol Ther 2017; 25: 1107-16. doi: 10.1016/j.ymthe.2017.03.026
  73. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18: 689-706. doi: 10.1038/s41573-019-0029-0
  74. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol 2017; 3: 841-9. doi: 10.1001/jamaon-col.2016.2064
  75. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14: 559-67. doi: 10.1038/nrc3770
  76. Ylösmäki E, Malorzo C, Capasso C, Honkasalo O, Fusciello M, Martins B, et al. Personalized cancer vaccine platform for clinically relevant oncolytic enveloped viruses. Mol Ther 2018; 26: 2315-25. doi: 10.1016/j. ymthe.2018.06.008
  77. Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, et al. Personalized cancer vaccines: Clinical landscape, challenges, and opportunities. Mol Ther 2021; 29: 555-70. doi: 10.1016/j.ymthe.2020.09.038
  78. Ries S, Korn WM. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002; 86: 5-11. doi: 10.1038/sj.bjc.6600006
  79. Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 2018; 18: 171-6. doi: 10.2174/1568009 618666171129221503
  80. Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther - Oncolytics 2019; 15: 234-47. doi: 10.1016/j.omto.2019.10.007
  81. Shen Y, Nemunaitis J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 2006; 13: 975-92. doi: 10.1038/sj.cgt.7700946
  82. Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33: 2780-8. doi: 10.1200/JCO.2014.58.3377
  83. Ramelyte E, Tastanova A, Balázs Z, Ignatova D, Turko P, Menzel U, et al Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 2021; 39: 394-406.e4. doi: 10.1016/j.ccell.2020.12.022
  84. Kaufman HL, Maciorowski D. Advancing oncolytic virus therapy by understanding the biology. Nat Rev Clin Oncol 2021; 18: 197-8. doi: 10.1038/s41571-021-00490-4
  85. Haitz K, Khosravi H, Lin JY, Menge T, Nambudiri VE. Review of talimogene laherparepvec: a first-in-class oncolytic viral treatment of advanced melanoma. J Am Acad Dermatol 2020; 83: 189-96. doi: 10.1016/j. jaad.2020.01.039
  86. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170: 1109-1119.e10. doi: 10.1016/j.cell.2017.08.027
  87. Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In situ cancer vaccination and immunovirotherapy using oncolytic HSV. Viruses 2021; 13: 1-27. doi: 10.3390/v13091740
  88. Todo T, Martuza RL, Rabkin SD, Johnson PA. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A 2001; 98: 6396-401. doi: 10.1073/pnas.101136398
  89. Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther 2012; 20: 749-58. doi: 10.1038/mt.2011.276
  90. Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J Immunother Cancer 2019; 7: 1-21. doi: 10.1186/s40425-018-0495-7
  91. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19: 329-36. doi: 10.1038/nm.3089
  92. Foerster F, Galle PR. The current landscape of clinical trials for systemic treatment of HCC. Cancers 2021; 13: 1962. doi: 10.3390/cancers13081962
  93. Gregg JR, Thompson TC. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 2021; 18: 170-84. doi: 10.1038/s41585-021-00431-x
  94. Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III Trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 2019; 37: 1051-61. doi: 10.1200/JCO.18.02031
  95. Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs 2009; 18: 1001-11. doi: 10.1517/13543780902997928
  96. Shi T, Song X, Wang Y, Liu F, Wei J. Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment. Front Immunol 2020; 11: 1-13. doi: 10.3389/fimmu.2020.00683
  97. Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20: 451-65. doi: 10.1080/14712598.2020.1693541
  98. Ungerechts G, Bossow S, Leuchs B, Holm PS, Rommelaere J, Coffey M, et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol Ther - Methods Clin Dev 2016; 3: 16018. doi: 10.1038/mtm.2016.18
  99. Ghosh S, Brown AM, Jenkins C, Campbell K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020; 25: 7-18. doi: 10.1177/1535676019899502
  100. Merten OW, Schweizer M, Chahal P, Kamen AA. Manufacturing of viral vectors for gene therapy: part I. Upstream processing. Pharm Bioprocess 2014; 2: 183-203. doi: 10.4155/pbp.14.16
  101. van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25: R42-52. doi: 10.1093/hmg/ddv451
  102. Ferreira MV, Cabral ET, Coroadinha AS. Progress and perspectives in the development of lentiviral vector producer cells. Biotechnol J 2021; 16. doi: 10.1002/biot.202000017
  103. Tomás HA, Rodrigues AF, Carrondo MJT, Coroadinha AS. LentiPro26: novel stable cell lines for constitutive lentiviral vector production. Sci Rep 2018; 8: 1-11. doi: 10.1038/s41598-018-23593-y
  104. Felberbaum RS. The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 2015; 10: 702-14. doi: 10.1002/biot.201400438
  105. Kurasawa JH, Park A, Sowers CR, Halpin RA, Tovchigrechko A, Dobson CL, et al Chemically defined, high-density insect cell-based expression system for scalable AAV vector production. Mol Ther Methods Clin Dev 2020; 19: 330-40. doi: 10.1016/j.omtm.2020.09.018
  106. Gupta P, Monge M, Boulais A, Chopra N, Hutchinson N. Single-use process platforms for responsive and cost-effective manufacturing. In: Eibl R, Eibl D, editors. Single-use technology in biopharmaceutical manufacture. Hoboken, NY, USA: John Wiley & Sons, Inc 2019. p. 201-10. doi: 10.1002/9781119477891.ch16
  107. Minh A, Kamen AA. Critical assessment of purification and analytical technologies for enveloped viral vector and vaccine processing and their current limitations in resolving co-expressed extracellular vesicles. Vaccines 2021; 9: 823. doi: 10.3390/vaccines9080823
  108. Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess 2014; 2: 237-51. http://www.future-science.com/doi/abs/10.4155/pbp.14.15%0Apapers2://publication/doi/10.4155/pbp.14.15
  109. Kaemmerer WF. How will the field of gene therapy survive its success? Bioeng Transl Med 2018; 3: 166-77. doi: 10.1002/btm2.10090
  110. Salzman R, Cook F, Hunt T, Malech HL, Reilly P, Foss-Campbell B, et al. Addressing the value of gene therapy and enhancing patient access to transformative treatments. Mol Ther 2018; 26: 2717-26. doi: 10.1016/j. ymthe.2018.10.017
  111. Capra E, Godfrey A, Loche A, Smith J. Innovation in viral-vector gene therapy: unlocking the promise. [cited 2021 Dec 24]. Available at https://www.mckinsey.com/industries/life-sciences/our-insights/gene-therapy-innovation-unlocking-the-promise-of-viral-vectors
  112. Wolf MW, Reichl U. Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines 2011; 10: 1451-75. doi: 10.1586/erv.11.111
  113. Martin NT, Bell JC. Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther 2018; 26: 1414-22. doi: 10.1016/j. ymthe.2018.04.001
  114. Bridle BW, Boudreau JE, Lichty BD, Brunellière J, Stephenson K, Koshy S, et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17: 1814-21. doi: 10.1038/mt.2009.154
DOI: https://doi.org/10.2478/raon-2022-0002 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 1 - 13
Submitted on: Nov 25, 2021
|
Accepted on: Jan 4, 2022
|
Published on: Feb 11, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Urban Bezeljak, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.