Have a personal or library account? Click to login
A method for generating large datasets of organ geometries for radiotherapy treatment planning studies Cover

A method for generating large datasets of organ geometries for radiotherapy treatment planning studies

Open Access
|Nov 2014

References

  1. 1. Olivera GH, Ruchala K, Lu W, Kapatoes J, Reckwerdt P, Jeraj R, et al. Evaluation of patient setup and plan optimization strategies based on deformable dose registration. Int J Radiat Oncol Biol Phys 2003; 57(Suppl): S188-9.10.1016/S0360-3016(03)00984-2
  2. 2. Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys 2005; 61: 1535-50.10.1016/j.ijrobp.2004.11.037
  3. 3. Keall PJ, Joshi S, Vedam SS, Siebers JV, Kini VR, Mohan R. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 2005; 32: 942-51.10.1118/1.1879152
  4. 4. Yadav P, Ramasubramanian V, Paliwal BR. Feasibility study on effect and stability of adaptive radiotherapy on kilovoltage cone beam CT. Radiol Oncol 2011; 45: 220-6.10.2478/v10019-011-0024-5
  5. 5. Vargas C, Martinez A, Kestin LL, Yan D, Grills I, Brabbins DS, et al. Dosevolume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy Int J Radiat Oncol Biol Phys 2005; 62: 1297-308.
  6. 6. Yang Y, Schreibmann E, Li T, Xing L. Dosimetric evaluation of kV cone-beam CT (CBCT) based dose calculation. Phys Med Biol 2007; 52: 685-705.10.1088/0031-9155/52/3/011
  7. 7. Wu C, Jeraj R, Lu W, Mackie TR. Fast treatment plan modification with an over-relaxed Cimmino algorithm. Med Phys 2004; 31: 191-200.10.1118/1.1631913
  8. 8. Wu C, Jeraj R, Olivera GH, Mackie TR. Re-optimization in adaptive radiotherapy. Phys Med Biol 2002; 47: 3181-95.10.1088/0031-9155/47/17/309
  9. 9. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol 1997; 42: 123-32.10.1088/0031-9155/42/1/008
  10. 10. Yan D, Lockman D, Brabbins D, Tyburski L, Martinez A. An off-line strategy for constructing a patientspecific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 2000; 48: 289-302.10.1016/S0360-3016(00)00608-8
  11. 11. Rehbinder H, Forsgren C, Lof J. Adaptive radiation therapy for compensation of errors in patient setup and treatment delivery. Med Phys 2004; 31: 3363-71.10.1118/1.180976815651619
  12. 12. Lam KL, Ten Haken RK, Litzenberg D, Balter JM, Pollock SM. An application of Bayesian statistical methods to adaptive radiotherapy. Phys Med Biol 2005; 50: 3849-58.10.1088/0031-9155/50/16/01316077231
  13. 13. Marchant TE, Amer AM, Moore CJ. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images. Phys Med Biol 2008; 53: 1087-98.10.1088/0031-9155/53/4/01818263960
  14. 14. Peszyńska-Piorun M, Malicki J, Golusinski W. Doses in organs at risk during head & neck radiotherapy using IMRT and 3D-CRT. Radiol Oncol 2012; 46: 328-36.10.2478/v10019-012-0050-y357289523412761
  15. 15. Matthiesen C, Ramgopol R, Seavey J, Ahmad S, Herman T. Intensity modulated radiation therapy (IMRT) for the treatment of unicentric Castlemans disease: a case report and review of the use of radiotherapy in the literature. Radiol Oncol 2012; 46: 265-70.10.2478/v10019-012-0008-0347294523077466
  16. 16. Oldham M, Letourneau D, Watt L, Hugo G, Yan D, Lockman D, et al. Cone-beam-CT guided radiation therapy: a model for on-line application. Radiother Oncol 2005; 75: 271-8.10.1016/j.radonc.2005.03.02615890419
  17. 17. Mohan R, Zhang X, Wang H, Kang Y, Wang X, Liu H, et al. Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for inter-fractional anatomic changes. Int J Radiat Oncol Biol Phys 2005; 61: 1258-66.10.1016/j.ijrobp.2004.11.03315752908
  18. 18. Zehtabian M, Faghihi R, Mosleh-Shirazi MA, Shakibafard AR, Mohammadi M, Baradaran-Ghahfarokhi M. A fast model for prediction of respiratory lung motion for image-guided radiotherapy: a feasibility study. Int J Radiat Res 2012; 10: 73-81.
  19. 19. Strojan P. Jereb S, Borsos I, But-Hadzic J, Zidar N. Radiotherapy for inverted papilloma: a case report and review of the literature. Radiol Oncol 2013; 47: 71-6.10.2478/v10019-012-0045-8357383723450506
  20. 20. Lötjönen J, Kivisto S, Koikkalainen J, Smutek D, Lauerma K. Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Image Anal 2004; 8: 371-86.10.1016/j.media.2004.06.01315450230
  21. 21. Cootes TF, Taylor CJ, Cooper D, Graham J. Active shape models - their training and application. Comput Vis Image Underst 1995; 61: 38-59.10.1006/cviu.1995.1004
  22. 22. Söhn M, Birkner M, Yan D, Alber M. Modeling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Phys Med Biol 2005; 50: 5893-908.10.1088/0031-9155/50/24/00916333162
  23. 23. Lötjönen J, Antila K, Lamminmaki E, Koikkalainen J, Lilja M. Artificial enlargement of a training set for statistical shape models: Application to cardiac images. Functional imaging and modeling of heart. Proceedings. Book series: Lecture notes in computer science 2005; 3504: 92-101.
  24. 24. Tölli T, Koikkalainen J, Lauerma K, Lötjönen J. Artificially enlarged training set in image segmentation. Medical image computing and computer-assisted intervention. Proceedings. PT 1 Book series: Lecture notes in computer science 2006; 4190: 75-82.
  25. 25. Dryden I, Mardia K. Statistical shape analysis. New York: John Wiley & Sons; 1998.
  26. 26. Small C. The statistical theory of shape. Berlin: Springer; 1996.10.1007/978-1-4612-4032-7
  27. 27. Ge Y, Maurer Jr C, Fitzpatrick J. Surface based 3-D image registration using the Iterative Closest Point algorithm with a closest point transform. Proc SPIE. Book series: Lecture notes in computer science 1996: 358-67.10.1117/12.237938
  28. 28. Cootes TF, Hill A, Taylor CJ, Haslam J. The use of active shape models for locating structures in medical images. Image Vis Comput 1994; 12: 355-66.10.1016/0262-8856(94)90060-4
  29. 29. Rajamani KT, Styner MA, Talib H, Zheng G, Nolte LP, MA Gonzalez Ballester MA. Statistical deformable bone models for robust 3D surface extrapolation from sparse data. Med Image Anal 2007; 11: 99-109.10.1016/j.media.2006.05.00117349939
  30. 30. Cootes TF, Taylor CJ. A mixture model for representing shape variation. Image Vis Comp 1999; 8: 567-74.
  31. 31. McLachlan G, Basford KE. Mixture models: inference and applications to clustering. New York: Dekker; 1988.
  32. 32. Tendick F, Downes M, Goktekin T, Cavusoglu M, Feygin D, Wu X, et al. A virtual environment testbed for training laparoscopic surgical skills. Presence: Teleoperators Virt Environ 2000; 9: 236-55.10.1162/105474600566772
  33. 33. Basdogan C, Ho CH, Srinivasan MA. Virtual environments in medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatronics 2001; 6: 269-85.10.1109/3516.951365
  34. 34. Lorenz C, Krahnstover N. 3D statistical shape models for medical image segmentation. roceedings. 2nd International Conference on 3-D Digital Imaging and Modeling 1999: 414-23.
  35. 35. Xie H, Qin H. Automatic knot determination of NURBS for interactive geometric design. IEEE International Conference on Shape Modeling and Applications 2001: 267-76.
  36. 36. Fletcher P, Lu C, Pizer S, Joshi S. Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 2004; 23: 995-1005.10.1109/TMI.2004.83179315338733
  37. 37. Üzümcü M, Frangi AF, Sonka M, Reiber, Lelieveldt. ICA vs. PCA active appearance models: application to cardiac MR segmentation. Medical image computing and computer-assisted intervention. Proceedings. PT 1 Book series: Lecture notes in computer science 2003; 2878: 451-8.
DOI: https://doi.org/10.2478/raon-2014-0003 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 408 - 415
Submitted on: Jul 19, 2013
Accepted on: Oct 11, 2013
Published on: Nov 5, 2014
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Nan Hu, Laura Cerviño, Paul Segars, John Lewis, Jinlu Shan, Steve Jiang, Xiaolin Zheng, Ge Wang, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.