Have a personal or library account? Click to login
Exploring the Potential of Artificial Intelligence to Predict Cyber Attacks: Creation, Evaluation and Comparative Analysis of Effective Models of Ensemble Methods, Isolation Forest, and Arima Cover

Exploring the Potential of Artificial Intelligence to Predict Cyber Attacks: Creation, Evaluation and Comparative Analysis of Effective Models of Ensemble Methods, Isolation Forest, and Arima

Open Access
|Mar 2025

References

  1. Aktar, S., & Yasin Nur, A. (2023). Towards DDoS attack detection using deep learning approach. Computer Networks, 129, 108026. Available at: https://doi.org/10.1016/j.cose.2023.103251.
  2. Analytics Vidhya Team. (2021). Anomaly detection using isolation forest - A complete guide. Analytics Vidhya. Available at: https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-complete-guide/.
  3. Box, G.E.P., Jenkins, G.M., & Reinsel, G.C. (2015). Time series analysis: Forecasting and control (5th ed.). Wiley Series in Probability and Statistics. Available at: https://www.google.com/books/edition/Time_Series_Analysis/rNt5CgAAQBAJ?hl=en&gbpv=0.
  4. Breiman, L. (1996). Bagging Predictors. Machine Learning, 24 (2), 123-140. Available at: https://doi.org/10.1023/A:1018054314350.
  5. Castillo, M., Pecchia, A., & Villano, U. (2022). AutoLog: Anomaly detection by deep autoencoding of system logs. Expert Systems with Applications. Available at: https://doi.org/10.1016/j.eswa.2021.116263.
  6. DigitalOcean Community. (2023). Anomaly detection using isolation forest in Python. DigitalOcean. Available at: https://www.digitalocean.com/community/tutorials/anomaly-detection-isolation-forest.
  7. Feamster, N., Kpotufe, S., & Yang, K. (2021). An efficient one-class SVM for anomaly detection in the Internet of Things. arXiv. Available at: https://arxiv.org/abs/2104.11146.
  8. Freund, Y., & Schapire, R.E. (1999). A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14 (5), 771-780. Available at: https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf.
  9. Ghosemajumder, S. (2020). How AI will automate cybersecurity in the post-COVID world. VentureBeat. Available at: https://venturebeat.com/2020/09/06/how-ai-will-automate-cybersecurity-in-the-post-covid-world/.
  10. Goodge, A., Hooi, B., Ng, S.K., & Ng, W.S. (2021). LUNAR: Unifying local outlier detection methods via graph neural networks. arXiv. Available at: https://doi.org/10.48550/arXiv.2112.05355.
  11. Hunter, J.D. (2020). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 22 (5), 75-84. DOI: 10.1109/MCSE.2007.55.
  12. Hyndman, R.J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice. OTexts. Available at: https://otexts.com/fpp3/.
  13. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Moritz, P., & Jupyter Development Team. (2021). Jupyter Notebooks ‒ a publishing format for reproducible computational workflows. Nature Computational Science, 1 (5), 224-231. DOI: 10.1038/s41599-021-00669-4.
  14. Liu, F.T., Ting, K.M., & Zhou, Z.H. (2008). Isolation forest. Proceedings of the 2008 IEEE International Conference on Data Mining, 413-422. Available at: https://doi.org/10.1109/ICDM.2008.17.
  15. McKinney, W. (2021). Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference. DOI: 10.25080/majora-92bf1922-00a. Available at: https://proceedings.scipy.org/articles/Majora-92bf1922-00a.
  16. Parisi, A. (2019). Hands-on artificial intelligence for cybersecurity: Implement smart AI systems for preventing cyber attacks and detecting threats and network anomalies. Packt Publishing. Available at: https://www.packtpub.com/en-us/product/hands-on-artificial-intelligence-for-cybersecurity-9781789804027.
  17. Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830. Available at: https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html.
  18. Quezada, V., Astudillo-Salinas, F., Tello-Oquendo, L., & Bernal, P. (2023). Real-time bot infection detection system using DNS fingerprinting and machine learning. Networks, 228, 109725. Available at: https://doi.org/10.1016/j.comnet.2023.109725.
  19. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., & Smola, A.J. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13 (7), 1443-1471. DOI:10.1162/089976601750264965.
  20. Sørbø, S., & Ruocco, M. (2024). Navigating the metric maze: A taxonomy of evaluation metrics for anomaly detection in time series. Data Mining and Knowledge Discovery, 38 (3), 1027-1068. Available at: https://link.springer.com/article/10.1007/s10618-023-00988-8#citeas.
  21. Waskom, M., & Seaborn Development Team. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6 (60), 3021. Available at: https://doi.org/10.21105/joss.03021.
  22. Xiang, H., et al. (2023). OptIForest: Optimal Isolation Forest for anomaly detection. arXiv. Available at: https://doi.org/10.48550/arXiv.2306.1270.
  23. Zhou, Z. (2012). Ensemble methods: Foundations and algorithms. Chapman and Hall/CRC. Available at: https://www.routledge.com/Ensemble-Methods-Foundations-and-Algorithms/Zhou/p/book/9781439830031.
DOI: https://doi.org/10.2478/raft-2025-0016 | Journal eISSN: 3100-5071 | Journal ISSN: 3100-5063
Language: English
Page range: 162 - 174
Published on: Mar 21, 2025
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Miroslav Stefanov, Sharon L. Burton, Ilhan M. Akbas, Sean Crouse, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.