Have a personal or library account? Click to login
A Proximal Policy Optimization Reinforcement Learning Approach  to Unmanned Aerial Vehicles Attitude Control Cover

A Proximal Policy Optimization Reinforcement Learning Approach to Unmanned Aerial Vehicles Attitude Control

Open Access
|Jan 2023

References

  1. Bai, X., Lu, C., Bao, Q., Zhu, S., & Xia, S. (2021). An Improved PPO for Multiple Unmanned Aerial Vehicles. Journal of Physics: Conference Series, Vol. 1757, No. 1, 012156. IOP Publishing Ltd.10.1088/1742-6596/1757/1/012156
  2. Bøhn, E., Coates, E. M., Moe, S. & Johansen, T. A. (2019). Deep Reinforcement Learning Attitude Control of Fixed-wing UAVs Using Proximal Policy Optimization. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 523-533. IEEE.10.1109/ICUAS.2019.8798254
  3. Bouabdallah, S. (2007). Design and Control of Quadrotors with Application to Autonomous Flying. THESIS No. 3727, Lausanne EPFL.
  4. Dooraki, A. R. & Lee, D. J. (2021). An Innovative Bio-inspired Flight Controller for Quad-rotor Drones: Quad-rotor Drone Learning to Fly Using Reinforcement Learning. Robotics and Autonomous Systems, 135, 103671.10.1016/j.robot.2020.103671
  5. Hu, J., Wang, L., Hu, T., Guo, C. & Wang, Y. (2022). Autonomous Maneuver Decision Making of Dual-UAV Cooperative Air Combat Based on Deep Reinforcement Learning. Electronics, Vol. 11, Issue 3, 467.10.3390/electronics11030467
  6. Koch, W., Mancuso, R., West, R. & Bestavros, A. (2019). Reinforcement Learning for UAV Attitude Control. ACM Transactions on Cyber-Physical Systems, Vol. 3, Issue 2, 1-21.10.1145/3301273
  7. Li, X., Wang, Q., Liu, J. & Zhang, W. (2020). Trajectory Design and Generalization for UAV Enabled Networks: A Deep Reinforcement Learning Approach. 2020 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, IEEE Publisher. Available at: https://ieeexplore.ieee.org/xpl/conhome/9116580/proceeding.10.1109/WCNC45663.2020.9120668
  8. Pham, T. H., Ichalal, D. & Mammar, S. (2019). LPV and Nonlinear-based Control of an Autonomous Quadcopter under Variations of Mass and Moment of Inertia. IFAC-Papers On Line, Vol. 52, Issue 28, 176-183.10.1016/j.ifacol.2019.12.371
  9. Schiano, F. et al (2014). Towards Estimation and Correction of Wind Effects on a Quadrotor UAV. IMAV 2014: International Micro Air Vehicle Conference and Competition 2014, 134-141. Available at: http://www.irisa.fr/lagadic/pdf/2014_imav_schiano.pdf.
  10. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. Available at: https://arxiv.org/abs/1707.06347.
  11. Sowoon, K. (2022). How to train your drone using PPO, https://github.com/yorgoon/How-to-train-your-drone-using-PPO, accessed on 6 September 2022.
  12. Ullah, N., Mehmood, Y., Aslam, J., Shaoping, W. & Phoungthong, K. (2022). Fractional Order Adaptive Robust Formation Control of Multiple Quad-rotor UAVs with Parametric Uncertainties and Wind Disturbances. Chinese Journal of Aeronautics, Vol. 35, Issue 8, 204-220. Available at: https://www.sciencedirect.com/science/article/pii/S1000936121003745.10.1016/j.cja.2021.10.012
DOI: https://doi.org/10.2478/raft-2022-0049 | Journal eISSN: 3100-5071 | Journal ISSN: 3100-5063
Language: English
Page range: 400 - 410
Published on: Jan 11, 2023
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Răzvan-Ionuț Bălaşa, Marian Ciprian Bîlu, Cătălin Iordache, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.