Have a personal or library account? Click to login
Deconvolution of Gamma Ray Spectra Using Singular Value Decomposition of Matrices Cover

Deconvolution of Gamma Ray Spectra Using Singular Value Decomposition of Matrices

By: Laszlo Hanka  
Open Access
|Jun 2020

References

  1. Bellmann, R. (1960). Introduction to Matrix Analysis. New York: McGraw-Hill Book Company.
  2. Berger, M. J., & Seltzer, S. M. (1972). Response function for sodium iodide scintillation detectors. Nuclear Instrumens and Methods, Vol. 104, 317-332.10.1016/0029-554X(72)90543-5
  3. Bouchet, L. (1995). A comparative study of deconvolution methods of gamma-ray spectra. Astronomy and Astrophysics Supplement Series, Ser.113, 167-183.
  4. Gerasimov, S. A. (1995). A direct method for separating peak multiplet in X-ray and gamma-ray spectra. Applied radiation and isotopes, Vol. 46, 181-184.10.1016/0969-8043(94)00132-J
  5. Gopinath, D. V., & Gopala, K. (1999). Analitical computation of the Compton continuum in gamma-ray spectrometry. Radiation Physics and Chemistry, Vol. 56, Issue 5-6, 525-534.10.1016/S0969-806X(99)00342-4
  6. Halmos, P. R (1958). Finite-dimensional vector spaces. Princeton, NJ: Van Nostrand.
  7. Hanka, L. (2020). Identification of radioactive isotopes using Cholesky-decomposition of matrices. Revista Academiei Forțelor Terestre / Land Forces Academy Review, Vol. 97, Issue 1, 76-84. Paper: 10.2478/raft-2020-0010.
  8. Householder, A. S. (1964). The Theory of Matrices in Numerical Analysis. New York: Blaisdell.
  9. Jandel, M., Morhac, M., Kliman, J., Krupa, L., Matousek, V., Hamilton, J. H., & Ramaya, A. V. (2004). Decomposition of continuum γ-ray spectra using syhthesized response matrix. Nuclear Instruments & Methods in Phisics Research, A 516, 172-183.10.1016/j.nima.2003.07.047
  10. Landi, G., & Zama, F. (2006). The active set method for nonnegative regularization of ill-posed problem. Applied Mathematics and Computation, Vol. 175, 715-729.10.1016/j.amc.2005.07.037
  11. Los Arcos, J. M. (1996). Gamma-ray spectra deconvolution by maximum-entropy methods. Nuclear Instruments and Methods in Physics Research, Section A, Vol. 369, Issue 2-3, 634-63610.1016/S0168-9002(96)80066-0
  12. Meng, L. J., & Ramsden D. (2000). An Inter-comparison of Three Spectral-Deconvolution Algorithms for Gamma-ray Spectroscopy. IEEE Transactions on Nuclear Science, Vol. 47. No. 4.10.1109/23.872973
  13. Morhac, M. (2006). Deconvolution methods and their applications in the analysis of gamma-ray spectra. Nuclear Instruments and Methods in Physics Research, Section A, Vol. 559, 119-123.10.1016/j.nima.2005.11.129
  14. Shi, H.-X., Chen, B.-X., Li, T.-Z., & Yun, D. (2002). Precise Monte Carlo simulation of gamma ray response function for an NaI (Tl) detector. Applied Radiation and Isotopes, Vol. 57, Issue 4, 517-524.
  15. Stoer, J., & Burlish, R. (1991). Introduction to numerical analysis. New-York: Spinger.
  16. Strang, G. (2003). Introduction to Linear Algebra. MIT: Wellesley-Cambridge Press.
DOI: https://doi.org/10.2478/raft-2020-0017 | Journal eISSN: 3100-5071 | Journal ISSN: 3100-5063
Language: English
Page range: 136 - 145
Published on: Jun 22, 2020
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Laszlo Hanka, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.