Have a personal or library account? Click to login
Analisys of Access Points with the Queue Model for Biometric Access Control in Large Headcount Plants Cover

Analisys of Access Points with the Queue Model for Biometric Access Control in Large Headcount Plants

By: Csaba Otti and  László Hanka  
Open Access
|Jul 2019

References

  1. 54/2014. (XII. 5.) BM Decree on the National Fire Protection Regulations (2014). Budapest: National Legislation.
  2. Berek, L. (2014). Security Systems. Budapest: National University of Public Service.
  3. Bunyitai, A. (2011). Location and role of access control systems in asset protection. Budapest: Hadmernok, VI.(4.), 17-25.
  4. Fishwick, P. A., & Hyungwook, P. (2008). Queue Modeling and Simulation. In Principles of Modeling and Simulation: A Multidisciplinary Approach. New Jersey, USA: John Wiley & Sons, Inc.10.1002/9780470403563.ch4
  5. Hanka, L. (2013). Applications for using binomial distribution in functioning identification systems, the application of maximum likelihood principle. Spring Technical Symposium, Budapest, Hungary: University of Obuda.
  6. Hanka, L., & Werner, G. (2015). Using the Beta-Binomial Distribution for the Analysis of Biometric Identification. 13th International Symposium on Intelligent Systems and Informatics: Proceedings, 209-216, Subotica, Serbia.10.1109/SISY.2015.7325381
  7. Hillier, F. S., & Lieberman, G. J. (2014). Introduction to Operations Research. New York, USA: McGraw-Hill Higher Education.
  8. Hungarian Standards Institution. (2015). MSZ EN 60839-11-2:2015. Alarm systems and electronic security systems. Part 11-2.: Electronic access control systems. Application Guidelines. Budapest: Hungarian Standards Institution.
  9. Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of imbedded Markov chain. Annals of Mathematical Statistics, Vol. 24, Issue 3, 338-354.10.1214/aoms/1177728975
  10. Kleinrock, L. (1975). Queueing Systems Volume 1: Theory. New York: Wiley - Interscience.
  11. Law, A. M. (2015). Simulation Modeling and Analysis. 5th Edition. Tucson, Arizona, USA: McGrow-Hill.
  12. Little, J. D. (1961). A proof of the queuing formula: l = λw. Operations Research, Vol. 9(3), pp. 383-387, available at: http://fisherp.scripts.mit.edu/wordpress/wp-content/uploads/2015/11/ContentServer.pdf10.1287/opre.9.3.383
  13. Lovász, L. (2009). Complexity of Algorithms. Budapest: ELTE, Institute of Mathematics.
  14. Lukács, J. (2014). Develop and present an access gate placement strategy through a few selected subway stations. Budapest: BME Budapest University of Technology and Economics.
  15. Otti, C. (2015). Classification of biometric access control systems based on real-time throughput. Proceedings of Fifth International Scientific Videoconference of Scientists and PhD. students or candidates, Bratislava, 63-71.
  16. Otti, C. (2016). Biometric Systems User Pattern Positioning Issues. DOSZ, Spring Wind Conference, 251-260, Budapest.
  17. Pap, G., & Szűcs, G. (2014). Stochastic processes. Szeged, Hungary: STE Institution of Bolyai, Stochastic Department.
  18. Pokorádi, L. (2008). Modeling of systems and processes. Debrecen, Hungary: Campus Kiado.
  19. Szeidl, L. (2009). Mass Service. Budapest, Hungary: University of Obuda, Institute of Informatics.
  20. Sztrik, J. (2011). Basics of queuing theory. Debrecen, Hungary: University of Debrecen.
DOI: https://doi.org/10.2478/raft-2019-0020 | Journal eISSN: 3100-5071 | Journal ISSN: 3100-5063
Language: English
Page range: 164 - 174
Published on: Jul 27, 2019
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Csaba Otti, László Hanka, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.