Have a personal or library account? Click to login

Natural Resources, Urbanisation, Economic Growth and the Ecological Footprint in South Africa: The Moderating Role of Human Capital

Open Access
|Jun 2021

Figures & Tables

Fig. 1

Plots of the series. EF – ecological footprint; HC – human capital; NR – natural resources; UB – urbanisation.Source: own compilation.
Plots of the series. EF – ecological footprint; HC – human capital; NR – natural resources; UB – urbanisation.Source: own compilation.

Fig. 2

Causality relationship schema.EF – ecological footprint; HC – human capital; NR – natural resources; UB – urbanisation.
Causality relationship schema.EF – ecological footprint; HC – human capital; NR – natural resources; UB – urbanisation.

Fig. 3

Cusum and Cusumsq plots for Model 1.Source: own compilation.
Cusum and Cusumsq plots for Model 1.Source: own compilation.

Fig. 4

Cusum and Cusumsq plots for Model 2.Source: own compilation.
Cusum and Cusumsq plots for Model 2.Source: own compilation.

Fig. 5

Cusum and Cusumsq plots for Model 3.Source: own compilation.
Cusum and Cusumsq plots for Model 3.Source: own compilation.

Bounds test results_

ModelsLower boundUpper boundSignificance level
Model 1
Fc (lngr, lnnr, lnhc, lnub). F = 8.34252.252.863.693.593.764.4610%5%1%
Model 2
Fc (lngr, lnnr, lnhc, lnub, lnin). F = 7.60691.812.142.822.933.344.2110%5%1%
Model 3
Fc (lngr, lnnr, lnhc, lnub, lngr2). F = 8.56472.292.713.463.384.564.7610%5%1%

BH test results_

Estimated modelsEG − JOHEG − JOH − BO − BDMCointegration
lnEF = f(lnGR,lnNR,lnHC,lnUB)14.65138.854Yes
lnEF = f(lnGR,lnNR,lnHC,lnUB,lnIN)21.36144.537Yes
lnEF = f(lnGR,lnNR,lnHC,lnUB,lnGR2)15.10136.342Yes
5% critical value (for Model 1)10.57620.143
5% critical value (for Models 2 and 3)10.41919.888

Descriptive statistics_

EFGRGRNRHCUBIN
Mean1.0708.77214.511.6570.7273.9910.549
Max.3.9308.93315.052.6781.0164.1790.801
Min.1.1008.61514.000.6500.5843.8670.426
Std. D0.2450.0930.3090.4600.1310.1040.114
Skewness−0.1170.2650.2810.0620.8620.3110.836
Kurtosis2.1982.1262.1282.7072.3841.6692.350
Prob.0.5050.3590.3480.9050.0370.1200.042

ZA unit root results_

VariablesZA unit root test
LevelDifference
t-valueBreak yeart-valueBreak year
EF−4.1912003−8.473***2008
GR−3.1162004−5.155**1994
NR−3.6591987−9.614**1981
HC−1.7262001−5.336***2001
UB−4.9911986−7.031***1985
IN−3.5812001−3.989***2001
GR2−3.0241985−5.206**1994

Measurement and source of data_

S/NIndicator nameMeasurementSource
1UrbanisationUrban population (% of total population)WDI (2019)
2Natural resourcesTotal natural resource rent (% of GDP)
3GDP per capitaIn constant 2010 USD
4Interaction term(Human capital × Urbanisation)
5GDP per capita2In constant 2010 USD
6Ecological footprintGlobal hectares per capitaGFN (2019)
7Human capitalHuman capital indexPenn World Table

Results of the DF-GLS and NG-Perron unit root tests_

VariablesDF-GLSNG-Perron
At levelDifferenceAt level Difference
t-statistict-statistict-statisticMSB 5%t-statisticMSB 5%
EF0.091−6.811***0.8290.2330.148**0.233
GR−0.846−4.228***0.3460.2330.162**0.233
HC−0.318***−0.2080.244**0.2330.5590.233
NR−2.426−8.647***0.2340.2330.154***0.233
UB−1.702***−0.7970.143**0.2330.5190.233
IN−0.528***−0.4740.228**0.2330.5510.233
GR2−0.920−4.152***0.3380.2330.164***0.233

Robustness check_

VariablesFMOLSDOLSCCR
GR (log)0.056**0.202**0.326***
(2.276)(2.581)(4.768)
HC (log)−0.064***−1.667***−0.621***
(−5.835)(−9.673)(−8.289)
NR (log)0.024***0.241***1.046***
(3.768)(4.573)(9.231)
UB (log)0.348***0.271***0.2286***
(3.987)(9.482)(7.271)

Toda-Yamamoto test results_

Null HypothesesMWALD Stat.ProbabilityCausality
GR→EF6.0150.021Yes
HC→EF5.8920.044Yes
NR→EF4.0420.120No
UB→EF8.7630.007Yes
EF→GR7.3820.035Yes
HC→GR9.7020.031Yes
NR→GR5.8190.042Yes
UB→GR8.2810.018Yes
EF→HC1.7450.650No
GR→HC0.6190.723No
NR→HC1.8910.634No
UB→HC2.8170.380No
EF→NR0.4830.066Yes
GR→NR0.5810.001Yes
HC→NR1.2910.035Yes
UB→NR9.3820.491No
EF→UB0.1730.849No
GR→UB0.4810.341No
HC→UB1.4610.635No
NR→UB9.9030.045Yes

ARDL results_

Long-run results
VariablesModel 1Model 2Model 3
Constant4.162**4.432**2.465
(2.478)(3.441)(1.047)
GR (log)0.032**0.546***0.129***
(2.675)(4.567)(3.657)
HC (log)−0.044**−0.146**−0.198***
(−2.987)(−2.286)(−3.892)
NR (log)0.275***0.297***0.140***
(2.979)(3.486)(3.287)
UB (log)0.450***0.228***0.052***
(7.657)(6.836)(6.679)
IN (log)−0.231***
(−4.675)
GR2 (log)−0.056***
(−7.546)

Studies on NR, human capital, energy consumption, and the EF_

Author(s)Time periodMethodologyVariables consideredCountry(ies)Key finding(s)
Nathaniel (2021)1990–2016AMGNRR, GDP, HC, EFASEAN blocNRR does not hurt environment in Thailand and Laos PDR. Bidirectional causality exists between HC and GDP, and between NRR and GDP.
Ulucak et al. (2020)1995–2016DOLS, FMOLS.EF, GDP, NRR, URB, RENBRICSREN, URB, and NRR decrease EF. GDP enhances environmental degradation.
Ahmed et al. (2020a)1970–2016ARDLNRR, HC, GDP, URB, EFChinaURB, NRR, and GDP drive EF in China.
Ahmed et al. (2020b)1971–2014CUP-FM, CUP-BC.FDI, GDP, NRE, URB, HC, EFG7 countries.GDP, NRE, and URB increase EF, while HC and FDI reduce it.
Nathaniel (2020)1971–2014ARDLGDP, NRE, URB, TRD, EFIndonesiaNRE, GDP, and URB increase EF in Indonesia.
Baloch et al. (2019a)1990–2016Driscoll-Kraay panel regressionFDI, GDP, FDV, NRE, URB, EF59 Belt and Road countries.FDV, FDI, NRE and URB have negative influence on environment.
Hassan et al. (2019a)1971–2014ARDLNRR, GDP, BIO, GDP2 EFPakistanLong-run causality exists between BIO and EF. NRR has positive impact on EF.
Hassan et al. (2019b)1971–2014ARDLHC, GDP, BIO, EFPakistanBIO increases EF. GDP declines EF by 0.60%. HC exerts negative effect on EF. GDP Granger causes EF.
Dogan et al. (2019)1971–2013ARDLFossil fuel energy, URB, Export, FDV, REN, EFMexico, Indonesia, Nigeria, and Turkey.URB is chief cause of environmental degradation.
Nathaniel et al. (2020c)1990–2016AMGREN, NRE, URB, EF, FDV, GDPMENAFDV, GDP, NRE, and URB increase EF in MENA. One-way causality flows from NRE and URB to EF.
Nathaniel et al. (2020d)1980–2016Panel Quantile RegressionFDI, EF, NRE, URB, GDP, carbon footprint, CO2 emissionsCoastal Mediterranean countriesNRE degrades environment. Effects of GDP and URB on environment were mixed for different indicators.
Ulucak et al. (2020)1992–2016FMOLS, DOLS.NRR, URB, REN, GDP, GDP2, EFBRICSEKC is validated in individual BRICS countries. NRR, URB, and REN reduce EF.
Destek, Sinha (2020)1980–2014MG. FMOLS-MG, DOLS-MG.GDP, GDP2, EF, REN, TRD, NRE24 OECD countries.EKC hypothesis does not hold. REN reduces EF.
Wang, Dong (2019)1990–2014AMGREN, URB, GDP, GDP2, EF, NRE14 SSA countries.Feedback causality runs among NRE, URB, GDP, and EF. NRE, GDP, and URB exert positive effects on EF.
Sharma et al. (2020)1990–2015Panel ARDLREN, URB, POP, FOR, NRE, GDP, EFAsiaURB, GDP, NRE, FOR, and POP drive EF. REN restores environmental quality.
Ansari et al. (2020)1991–2017PMGEF, URB, Material footprint, GDP, GLO, NRE37 Asian countriesURB and GLO increase EF. GDP and NRE also increase EF.
Sharif et al. (2020)1965Q1–2017Q4Quantile ARDLNRE, EF, REN, GDPTurkeyFeedback causality exists among listed variables; RE, GDP, NRE, and EF.
Altıntaş, Kassouri (2020)1990–2014CCEMG, IFE.CO2 emissions, EF, RE, GDP, NREEuropeRE is environmentally friendly. NRE exerts positive impact on EF.
Baz et al. (2020)1971–2014NARDLGDP, NRE Capital, EFPakistanEF Granger causes NRE. GDP does not cause EF.
Aziz et al. (2020)1990–2018QARDLGDP, EF, FOR, REPakistanFOR and REN minimise EF. GDP increases EF thereby encouraging environmental degradation.
DOI: https://doi.org/10.2478/quageo-2021-0012 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 63 - 76
Submitted on: Oct 22, 2020
Published on: Jun 30, 2021
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Solomon Prince Nathaniel, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.