References
- Alagar V.S., 1976. The distribution of the distance between random points. Journal of Applied Probability 13(3): 558–566.
- Arbia G., 2001a. Modelling the geography of economic activities on a continuous space. Papers in Regional Science 80: 411–424.
- Arbia G., 2001b. The role of spatial effects in the empirical analysis of regional concentration. Journal of Geographical Systems 3: 271–281.
- Arbia G., Piras G., 2009. A new class of spatial concentration measures. Computational Statistics and Data Analysis 53: 4471–4481.
- Arbia G., Espa G., Giuliani D., Mazzitelli A., 2010. Detecting the existence of space-time clustering of firms. Regional Science and Urban Economics 40(5): 311–323.
- Arbia G., Espa G., Giuliani D., 2015. Analysis of spatial concentration and dispersion. In: Karlsson C., Anderson M., Norman T. (eds), Handbook of Research Methods and Applications in Economic Geography. Elgar: 135–157.
- Baddeley A.D., 2000. The episodic buffer: A new component of working memory? Trends in Cognitive Sciences 4: 417–423.
- Duranton G., Overman H.G., 2005. Testing for localization using microgeographic data. The Review of Economic Studies 72(4): 1077–1106.
- Duranton G., Overman H.G., 2008. Exploring the detailed location patterns of UK manufacturing industries using microgeographic data. Journal of Regional Science 48: 213–243.
- Guillain R., Le Gallo J., 2010. Agglomeration and dispersion of economic activities in and around Paris: An exploratory spatial data analysis. Environment and Planning B, 37: 961–81.
- Kendall M.G., Moran P.A.P., 1962. Geometric probability. Griffin Statistical Monographs. Griffin, London.
- Kopczewska K., 2017. SPAG – index of spatial agglomeration. In: Kopczewska K., Churski P., Ochojski A., Polko A. (eds), Measuring regional specialisation. A new approach. Palgrave Macmillan, Cham, Switzerland: 189–216.
- Marcon E., Puech F., 2003. Evaluating the geo-graphic concentration of industries using distance-based methods. Journal of Economic Geography 3(4): 409–428.
- Marcon E., Puech F., 2010. Measures of the geographic concentration of industries: Improving distance-based methods. Journal of Economic Geography 10(5): 745–762.
- Moran P.A.P., 1966. A note on recent research in geometrical probability. Journal of Applied Probability 3: 453–463.
- Moran P.A.P., 1969. A second note on recent research in geometrical probability. Advances in Applied Probability 1: 73–89.
- Mori T., Smith T., 2014. A probabilistic modeling approach to the detection of industrial agglomeration. Journal of Economic Geography 14(3): 547–588.
- Morphet C.S., 1997. A statistical method for the identification of spatial clusters. Environment and Planning A, 29: 1039–1055.
- Nadarajah S., Kotz S., 2005. On the product and ratio of gamma and beta random variables. Allgemeines Statistisches Archiv 89(4): 435–449.
- Penttinen A., Stoyan D., Henttonen H., 1992. Marked point processes in forest statistics. Forest Science 38: 806–824.
- Penttinen A., 2006. Statistics for marked point patterns. In: Yearbook of the Finnish Statistical Society 2006: 70–91.
- Ripley B.D., 1976. The second-order analysis of stationary point processes. Journal of Applied Probability 13: 255–266.
- Ripley B.D., 1977. Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2): 172–212.
- Sohn J., 2014. Industry classification considering spatial distribution of manufacturing activities. Area 46.1: 101–110.
- Zhuang Y., Pan J., 2011. Random distances associated with hexagons. Working paper.
- Zhuang Y., Pan J., 2017. A geometrical probability approach to location-critical network. Working paper.