Have a personal or library account? Click to login
Modulation of Quantum Features of a Driven Two-Level System via a rf Field Cover

Modulation of Quantum Features of a Driven Two-Level System via a rf Field

Open Access
|Jul 2025

References

  1. J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum (2018).
  2. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning. Quantum(2017).
  3. B. M. Terhal, Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).
  4. M. A. Khan, S. Ghafoor, S. M. H. Zaidi, H. Khan, and A. Ahmad, From quantum communication fundamentals to decoherence mitigation strategies: Addressing global quantum network challenges and projected applications. Heliyon 10, e34331 (2024).
  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press: Cambridge, UK, 2010).
  6. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 306, 1330 (2004).
  7. Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).
  8. L. Mandelstam and I. Tamm, The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. In: Bolotovskii, B.M., Frenkel, V.Y., Peierls, R. (eds) Selected Papers. Springer, Berlin, Heidelberg, 1991, pp. 115–123.
  9. N. Margolus and L. B. Levitin, The maximum speed of dynamical evolution. Physica D 120, 188 (1998).
  10. L. B. Levitin and T. Toffoli, Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight. Phys. Rev. Lett. 103, 160502 (2009).
  11. A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, Quantum Speed Limits in Open System Dynamics. Phys. Rev. Lett. 110, 050403 (2013).
  12. Y. Zhang, W. Han, Y. Xia, J. Cao, and H. Fan, Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890(2014).
  13. Y. Wu, J. Yuan, C. Zhang, Z. Zhu, J. Deng, X. Zhang, P. Zhang, Q. Guo, Z. Wang, J. Huang, C. Song, H. Li, D.-W. Wang, H. Wang, and G. S. Agarwal, Testing the unified bounds of the quantum speed limit. Phys. Rev.A 110, 042215 (2024).
  14. K. Bhattacharyya, Quantum decay and the Mandelstam-Tamm-energy inequality. J. Phys. A 16, 2993 (1983).
  15. B. Yadin, S. Imai, and O. Gühne, Quantum Speed Limit for States and Observables of Perturbed Open Systems. Phys. Rev. Lett. 132, 230404 (2024).
  16. Z.-y. Mai and C.-s. Yu, Tight and attainable quantum speed limit for open systems. Phys. Rev. A 108, 052207(2023).
  17. K. Kobayashi, Reachable-set characterization of an open quantum system by the quantum speed limit. Phys. Rev.A 105, 042608 (2022).
  18. S.-S. Nie, F.-H. Ren, R.-H. He, J. Wu, and Z.-M. Wang, Control cost and quantum speed limit time in controlled almost-exact state transmission in open systems. Phys. Rev. A 104, 052424 (2021).
  19. A. J. B. Rosal, D. O. Soares-Pinto, and D. P. Pires, Quantum speed limits based on Schatten norms: Universality and tightness. Phys. Lett. A 534 (2025).
  20. T. Nishiyama and Y. Hasegawa, Speed limits and thermodynamic uncertainty relations for quantum systems with the non-Hermitian Hamiltonian. Phys. Rev. A 111, 012214 (2025).
  21. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109(2003).
  22. J. Anandan and Y. Aharonov, Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990).
  23. I. Brouzos, A. I. Streltsov, A. Negretti, R. S. Said, T. Caneva, S. Montangero, and T. Calarco, Quantum speed limit and optimal control of many-boson dynamics. Phys. Rev. A 92, 062110 (2015).
  24. Z. Hu, L. Wang, H. Chen, H. Yuan, C.-H. F. Fung, J. Liu, and Z. Miao, Tight bounds of quantum speed limit for noisy dynamics via maximal rotation angles. (2023), arXiv:1601.00150.
  25. A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, Speed of ion-trap quantum-information processors. Phys. Rev. A 62, 042305 (2000).
  26. J. J. García-Ripoll, P. Zoller, and J. I. Cirac, Speed Optimized Two-Qubit Gates with Laser Coherent Control Techniques for Ion Trap Quantum Computing. Phys. Rev. Lett. 91, 157901 (2003).
  27. P. Lu, T. Liu, Y. Liu, X. Rao, Q. Lao, H. Wu, F. Zhu, and L. Luo, Realizing quantum speed limit in open system with a -symmetric trapped-ion qubit. New J. Phys. 26, 013043 (2024).
  28. M. Musadiq, Quantum Speed Limit Time of A Spin Qubit Coupled With Heisenberg Spin Environment. Int.J. Theor. Phys. 63, 205 (2024).
  29. M. Musadiq, S. Khan, M. Javed, and M. Shamirzaie, Quantum speed limit time of a spin qubit in noninteracting spin bath. Int. J. Quant. Inf. 17, 1950054 (2019).
  30. P. J. Jones and P. Kok, Geometric derivation of the quantum speed limit. Phys. Rev. A 82, 022107 (2010).
  31. M. Zwierz, Comment on “Geometric derivation of the quantum speed limit”. Phys. Rev. A 86, 016101 (2012).
  32. S. Deffner and E. Lutz, Quantum Speed Limit for Non-Markovian Dynamics. Phys. Rev. Lett. 111, 010402(2013).
  33. S. Deffner and E. Lutz, Energy–time uncertainty relation for driven quantum systems. J. Phys. A 46, 335302(2013).
  34. M. Okuyama and M. Ohzeki, Comment on ’Energy-time uncertainty relation for driven quantum systems’. J. Phys. A 51, 318001 (2018).
  35. S. Sun, Y. Peng, X. Hu, and Y. Zheng, Quantum Speed Limit Quantified by the Changing Rate of Phase. Phys.Rev. Lett. 127, 100404 (2021).
  36. V. Chouhan, T. Ring, G. Wu, and E. Viklund, Mitigation of Pitting on Nitrogen-Doped Niobium Surfaces through Two-Step Electropolishing. J. Electrochem. Soc. 172, 023502 (2025).
  37. T. Zhu, X. Bao, Y. He, Z. Xue, Y. Qiu, C. Li, W. Xue, T. Jiang, Q. Chu, H. Guo, S. Huang, Z. Yang, W. Yue, J. Chen, M. Xu, S. Zhang, K. Zhang, H. Zhao, T. Tan, and A. Wu, Plasma characterization and modulation techniques for 1.3 GHz, 9-cell superconducting rf cavity cleaning. Phys. Rev. Accel. Beams 27, 123101 (2024).
  38. J. Slim, N. N. Nikolaev, F. Rathmann, A. Wirzba, A. Nass, V. Hejny, J. Pretz, H. Soltner, F. Abusaif, A. Aggarwal, A. Aksentev, A. Andres, L. Barion, G. Ciullo, S. Dymov, R. Gebel, M. Gaisser, K. Grigoryev, D. Grzonka, O. Javakhishvili, A. Kacharava, V. Kamerdzhiev, S. Karanth, I. Keshelashvili, A. Lehrach, P. Lenisa, N. Lomidze, B. Lorentz, A. Magiera, D. Mchedlishvili, F. Müller, A. Pesce, V. Poncza, D. Prasuhn, A. Saleev, V. Shmakova, H. Ströher, M. Tabidze, G. Tagliente, Y. Valdau, T. Wagner, C. Weidemann, A. Wrońska, and M. Żurek (JEDI Collaboration), First detection of collective oscillations of a stored deuteron beam with an amplitude close to the quantum limit. Phys. Rev. Accel. Beams 24, 124601 (2021).
  39. S. Vappangi, T. Deepa, V. Mani, and N. Bharathiraja, On the performance of delta sigma modulators for DCO-OFDM based NOMA visible light communication systems. Opt. Laser Technol. 167, 109653 (2023).
  40. F. Ni, Z. Song, J. Chen, B. Xu, F. Xu, and L. Ding, Achieving Electron Capture Dissociation in the Radio Frequency Linear Ion Trap without the Assistance of a Magnetic Field A Simulation Study. J. Am. Soc. Mass Spectrom. 35, 2499 (2024).
  41. J.-Y. Wang, W.-X. Huang, Y.-L. Tian, Y.-S. Wang, Y. Wang, W.-L. Zhang, Y.-J. Huang, Z.-G. Gan, and H.-S. Xu, A Radio-Frequency Ion Trap System for the Multi-Reflection Time-of-Flight Mass Spectrometer at SHANS and Its Offline Commissioning. Atoms 11 (2023).
  42. D. J. Sorce and S. Michaeli, On the geometric phase effects on time evolution of the density matrix during modulated radiofrequency pulses. J. Magn. Reson. 372, 107840 (2025).
  43. C. Hao, Z. Qiu, Q. Sun, Y. Zhu, and D. Sheng, Interactions between nonresonant rf fields and atoms with strong spin-exchange collisions. Phys. Rev. A 99, 053417 (2019).
  44. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom—Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2008).
  45. P. Poggi, F. Lombardo, and D. Wisniacki, Quantum speed limit and optimal evolution time in a two-level system. Europhys. Lett. 104, 40005 (2013).
  46. G. C. Hegerfeldt, Driving at the Quantum Speed Limit: Optimal Control of a Two-Level System. Phys. Rev.Lett. 111, 260501 (2013).
  47. Y. Zheng and F. L. H. Brown, Single-Molecule Photon Counting Statistics via Generalized Optical Bloch Equations. Phys. Rev. Lett. 90, 238305 (2003).
  48. Y. Zhang, W. Han, Y. Xia, J. Cao, and H. Fan, Classical-driving-assisted quantum speed-up. Phys. Rev. A 91,032112 (2015).
  49. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N‐level systems. J. Math. Phys. 17, 821 (1976).
  50. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976).
  51. G. C. Ghirardi, P. Pearle, and A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78 (1990).
  52. F. Shikerman, L. P. Horwitz, and A. Pe’er, Reconstruction of the environmental correlation function from single-emitter photon statistics: A non-Markovian approach. Phys. Rev. A 87, 053851 (2013).
  53. F. Shikerman and E. Barkai, Probing dynamics of single molecules: Nonlinear spectroscopy approach. J. Chem.Phys. 129, 244702 (2008).
  54. S. Mouslih, Z. Dahbi, M. Jakha, S. El Asri, S. Taj, and B. Manaut, Influence of an external electromagnetic field on quantum entanglement and coherence in a two-qubit graphene system. Phys. Scr. 100, 035104 (2025).
  55. H. Sun, H. Chen, J. Ma, W. Tao, M. Liu, and X. Yang, Protecting quantum coherence of semiconductor qubit by utilizing charge noise. Laser Phys. Lett. 22, 035201 (2025).
  56. N.-N. Zhang, C.-Y. Wu, X. Zhou, Q.-Y. Liu, C.-G. Liu, Y.-R. Guo, and R.-P. Li, Tunable non-Markovian and quantum coherence in the single-qubit dephasing noise channel. Sci. China Phys. Mech. Astron. 68, 230313(2025).
  57. A. Garg and A. K. Pati, Trade-off relations between quantum coherence and measure of many-body localization. Phys. Rev. B 111, 054202 (2025).
  58. S. S. Pratapsi, L. Buffoni, and S. Gherardini, Competition of decoherence and quantum speed limits for quantumgate fidelity in the Jaynes-Cummings model. Phys. Rev. Res. 6, 023296 (2024).
  59. L. Tian, A. Govindarajan, P. Parajuli, and K. Cai, Quantum state preparation in Jaynes-Cummings lattices. J. Phys.: Conf. Ser. 2912, 012041 (2024).
  60. X. Cao, J. Cui, M. H. Yung, and R.-B. Wu, Robust control of single-qubit gates at the quantum speed limit. Phys. Rev. A 110, 022603 (2024).
  61. K. Andrzejewski, Krzysztofand Bolonek-Lasoń and P. Kosiński, Note on the Margolus–Levitin quantum speed limit for arbitrary fidelity. Quant. Inf. Proc. 23, 167 (2024).
  62. B. T. Gard, Z. Parrott, K. Jacobs, J. Aumentado, and R. W. Simmonds, Fast high-fidelity quantum nondemolition readout of a superconducting qubit with tunable transverse couplings. Phys. Rev. Appl. 21, 024008 (2024).
  63. S. Sun and Y. Zheng, Distinct Bound of the Quantum Speed Limit via the Gauge Invariant Distance. Phys. Rev.Lett. 123, 180403 (2019).
  64. T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Decoherence-protected quantum gates for a hybrid solid-state spin register. NATURE 484, 82 (2012).
  65. J. E. Lang, R. B. Liu, and T. S. Monteiro, Dynamical-Decoupling-Based Quantum Sensing: Floquet Spectroscopy. Phys. Rev. X 5, 041016 (2015).
  66. J. Jiang, and Q. Chen, Universal and robust dynamic decoupling controls for zero-field magnetometry by using molecular clock sensors. Phys. Rev. A 110, 043714 (2024).
DOI: https://doi.org/10.2478/qic-2025-0013 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 248 - 259
Submitted on: Nov 3, 2024
Accepted on: Mar 23, 2025
Published on: Jul 1, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Shuning Sun, Xiangjia Meng, Xiangji Cai, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.