References
- J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum (2018).
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning. Quantum(2017).
- B. M. Terhal, Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).
- M. A. Khan, S. Ghafoor, S. M. H. Zaidi, H. Khan, and A. Ahmad, From quantum communication fundamentals to decoherence mitigation strategies: Addressing global quantum network challenges and projected applications. Heliyon 10, e34331 (2024).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press: Cambridge, UK, 2010).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 306, 1330 (2004).
- Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).
- L. Mandelstam and I. Tamm, The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. In: Bolotovskii, B.M., Frenkel, V.Y., Peierls, R. (eds) Selected Papers. Springer, Berlin, Heidelberg, 1991, pp. 115–123.
- N. Margolus and L. B. Levitin, The maximum speed of dynamical evolution. Physica D 120, 188 (1998).
- L. B. Levitin and T. Toffoli, Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight. Phys. Rev. Lett. 103, 160502 (2009).
- A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, Quantum Speed Limits in Open System Dynamics. Phys. Rev. Lett. 110, 050403 (2013).
- Y. Zhang, W. Han, Y. Xia, J. Cao, and H. Fan, Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890(2014).
- Y. Wu, J. Yuan, C. Zhang, Z. Zhu, J. Deng, X. Zhang, P. Zhang, Q. Guo, Z. Wang, J. Huang, C. Song, H. Li, D.-W. Wang, H. Wang, and G. S. Agarwal, Testing the unified bounds of the quantum speed limit. Phys. Rev.A 110, 042215 (2024).
- K. Bhattacharyya, Quantum decay and the Mandelstam-Tamm-energy inequality. J. Phys. A 16, 2993 (1983).
- B. Yadin, S. Imai, and O. Gühne, Quantum Speed Limit for States and Observables of Perturbed Open Systems. Phys. Rev. Lett. 132, 230404 (2024).
- Z.-y. Mai and C.-s. Yu, Tight and attainable quantum speed limit for open systems. Phys. Rev. A 108, 052207(2023).
- K. Kobayashi, Reachable-set characterization of an open quantum system by the quantum speed limit. Phys. Rev.A 105, 042608 (2022).
- S.-S. Nie, F.-H. Ren, R.-H. He, J. Wu, and Z.-M. Wang, Control cost and quantum speed limit time in controlled almost-exact state transmission in open systems. Phys. Rev. A 104, 052424 (2021).
- A. J. B. Rosal, D. O. Soares-Pinto, and D. P. Pires, Quantum speed limits based on Schatten norms: Universality and tightness. Phys. Lett. A 534 (2025).
- T. Nishiyama and Y. Hasegawa, Speed limits and thermodynamic uncertainty relations for quantum systems with the non-Hermitian Hamiltonian. Phys. Rev. A 111, 012214 (2025).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109(2003).
- J. Anandan and Y. Aharonov, Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990).
- I. Brouzos, A. I. Streltsov, A. Negretti, R. S. Said, T. Caneva, S. Montangero, and T. Calarco, Quantum speed limit and optimal control of many-boson dynamics. Phys. Rev. A 92, 062110 (2015).
- Z. Hu, L. Wang, H. Chen, H. Yuan, C.-H. F. Fung, J. Liu, and Z. Miao, Tight bounds of quantum speed limit for noisy dynamics via maximal rotation angles. (2023), arXiv:1601.00150.
- A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, Speed of ion-trap quantum-information processors. Phys. Rev. A 62, 042305 (2000).
- J. J. García-Ripoll, P. Zoller, and J. I. Cirac, Speed Optimized Two-Qubit Gates with Laser Coherent Control Techniques for Ion Trap Quantum Computing. Phys. Rev. Lett. 91, 157901 (2003).
- P. Lu, T. Liu, Y. Liu, X. Rao, Q. Lao, H. Wu, F. Zhu, and L. Luo, Realizing quantum speed limit in open system with a -symmetric trapped-ion qubit. New J. Phys. 26, 013043 (2024).
- M. Musadiq, Quantum Speed Limit Time of A Spin Qubit Coupled With Heisenberg Spin Environment. Int.J. Theor. Phys. 63, 205 (2024).
- M. Musadiq, S. Khan, M. Javed, and M. Shamirzaie, Quantum speed limit time of a spin qubit in noninteracting spin bath. Int. J. Quant. Inf. 17, 1950054 (2019).
- P. J. Jones and P. Kok, Geometric derivation of the quantum speed limit. Phys. Rev. A 82, 022107 (2010).
- M. Zwierz, Comment on “Geometric derivation of the quantum speed limit”. Phys. Rev. A 86, 016101 (2012).
- S. Deffner and E. Lutz, Quantum Speed Limit for Non-Markovian Dynamics. Phys. Rev. Lett. 111, 010402(2013).
- S. Deffner and E. Lutz, Energy–time uncertainty relation for driven quantum systems. J. Phys. A 46, 335302(2013).
- M. Okuyama and M. Ohzeki, Comment on ’Energy-time uncertainty relation for driven quantum systems’. J. Phys. A 51, 318001 (2018).
- S. Sun, Y. Peng, X. Hu, and Y. Zheng, Quantum Speed Limit Quantified by the Changing Rate of Phase. Phys.Rev. Lett. 127, 100404 (2021).
- V. Chouhan, T. Ring, G. Wu, and E. Viklund, Mitigation of Pitting on Nitrogen-Doped Niobium Surfaces through Two-Step Electropolishing. J. Electrochem. Soc. 172, 023502 (2025).
- T. Zhu, X. Bao, Y. He, Z. Xue, Y. Qiu, C. Li, W. Xue, T. Jiang, Q. Chu, H. Guo, S. Huang, Z. Yang, W. Yue, J. Chen, M. Xu, S. Zhang, K. Zhang, H. Zhao, T. Tan, and A. Wu, Plasma characterization and modulation techniques for 1.3 GHz, 9-cell superconducting rf cavity cleaning. Phys. Rev. Accel. Beams 27, 123101 (2024).
- J. Slim, N. N. Nikolaev, F. Rathmann, A. Wirzba, A. Nass, V. Hejny, J. Pretz, H. Soltner, F. Abusaif, A. Aggarwal, A. Aksentev, A. Andres, L. Barion, G. Ciullo, S. Dymov, R. Gebel, M. Gaisser, K. Grigoryev, D. Grzonka, O. Javakhishvili, A. Kacharava, V. Kamerdzhiev, S. Karanth, I. Keshelashvili, A. Lehrach, P. Lenisa, N. Lomidze, B. Lorentz, A. Magiera, D. Mchedlishvili, F. Müller, A. Pesce, V. Poncza, D. Prasuhn, A. Saleev, V. Shmakova, H. Ströher, M. Tabidze, G. Tagliente, Y. Valdau, T. Wagner, C. Weidemann, A. Wrońska, and M. Żurek (JEDI Collaboration), First detection of collective oscillations of a stored deuteron beam with an amplitude close to the quantum limit. Phys. Rev. Accel. Beams 24, 124601 (2021).
- S. Vappangi, T. Deepa, V. Mani, and N. Bharathiraja, On the performance of delta sigma modulators for DCO-OFDM based NOMA visible light communication systems. Opt. Laser Technol. 167, 109653 (2023).
- F. Ni, Z. Song, J. Chen, B. Xu, F. Xu, and L. Ding, Achieving Electron Capture Dissociation in the Radio Frequency Linear Ion Trap without the Assistance of a Magnetic Field A Simulation Study. J. Am. Soc. Mass Spectrom. 35, 2499 (2024).
- J.-Y. Wang, W.-X. Huang, Y.-L. Tian, Y.-S. Wang, Y. Wang, W.-L. Zhang, Y.-J. Huang, Z.-G. Gan, and H.-S. Xu, A Radio-Frequency Ion Trap System for the Multi-Reflection Time-of-Flight Mass Spectrometer at SHANS and Its Offline Commissioning. Atoms 11 (2023).
- D. J. Sorce and S. Michaeli, On the geometric phase effects on time evolution of the density matrix during modulated radiofrequency pulses. J. Magn. Reson. 372, 107840 (2025).
- C. Hao, Z. Qiu, Q. Sun, Y. Zhu, and D. Sheng, Interactions between nonresonant rf fields and atoms with strong spin-exchange collisions. Phys. Rev. A 99, 053417 (2019).
- C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom—Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2008).
- P. Poggi, F. Lombardo, and D. Wisniacki, Quantum speed limit and optimal evolution time in a two-level system. Europhys. Lett. 104, 40005 (2013).
- G. C. Hegerfeldt, Driving at the Quantum Speed Limit: Optimal Control of a Two-Level System. Phys. Rev.Lett. 111, 260501 (2013).
- Y. Zheng and F. L. H. Brown, Single-Molecule Photon Counting Statistics via Generalized Optical Bloch Equations. Phys. Rev. Lett. 90, 238305 (2003).
- Y. Zhang, W. Han, Y. Xia, J. Cao, and H. Fan, Classical-driving-assisted quantum speed-up. Phys. Rev. A 91,032112 (2015).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N‐level systems. J. Math. Phys. 17, 821 (1976).
- G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976).
- G. C. Ghirardi, P. Pearle, and A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78 (1990).
- F. Shikerman, L. P. Horwitz, and A. Pe’er, Reconstruction of the environmental correlation function from single-emitter photon statistics: A non-Markovian approach. Phys. Rev. A 87, 053851 (2013).
- F. Shikerman and E. Barkai, Probing dynamics of single molecules: Nonlinear spectroscopy approach. J. Chem.Phys. 129, 244702 (2008).
- S. Mouslih, Z. Dahbi, M. Jakha, S. El Asri, S. Taj, and B. Manaut, Influence of an external electromagnetic field on quantum entanglement and coherence in a two-qubit graphene system. Phys. Scr. 100, 035104 (2025).
- H. Sun, H. Chen, J. Ma, W. Tao, M. Liu, and X. Yang, Protecting quantum coherence of semiconductor qubit by utilizing charge noise. Laser Phys. Lett. 22, 035201 (2025).
- N.-N. Zhang, C.-Y. Wu, X. Zhou, Q.-Y. Liu, C.-G. Liu, Y.-R. Guo, and R.-P. Li, Tunable non-Markovian and quantum coherence in the single-qubit dephasing noise channel. Sci. China Phys. Mech. Astron. 68, 230313(2025).
- A. Garg and A. K. Pati, Trade-off relations between quantum coherence and measure of many-body localization. Phys. Rev. B 111, 054202 (2025).
- S. S. Pratapsi, L. Buffoni, and S. Gherardini, Competition of decoherence and quantum speed limits for quantumgate fidelity in the Jaynes-Cummings model. Phys. Rev. Res. 6, 023296 (2024).
- L. Tian, A. Govindarajan, P. Parajuli, and K. Cai, Quantum state preparation in Jaynes-Cummings lattices. J. Phys.: Conf. Ser. 2912, 012041 (2024).
- X. Cao, J. Cui, M. H. Yung, and R.-B. Wu, Robust control of single-qubit gates at the quantum speed limit. Phys. Rev. A 110, 022603 (2024).
- K. Andrzejewski, Krzysztofand Bolonek-Lasoń and P. Kosiński, Note on the Margolus–Levitin quantum speed limit for arbitrary fidelity. Quant. Inf. Proc. 23, 167 (2024).
- B. T. Gard, Z. Parrott, K. Jacobs, J. Aumentado, and R. W. Simmonds, Fast high-fidelity quantum nondemolition readout of a superconducting qubit with tunable transverse couplings. Phys. Rev. Appl. 21, 024008 (2024).
- S. Sun and Y. Zheng, Distinct Bound of the Quantum Speed Limit via the Gauge Invariant Distance. Phys. Rev.Lett. 123, 180403 (2019).
- T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Decoherence-protected quantum gates for a hybrid solid-state spin register. NATURE 484, 82 (2012).
- J. E. Lang, R. B. Liu, and T. S. Monteiro, Dynamical-Decoupling-Based Quantum Sensing: Floquet Spectroscopy. Phys. Rev. X 5, 041016 (2015).
- J. Jiang, and Q. Chen, Universal and robust dynamic decoupling controls for zero-field magnetometry by using molecular clock sensors. Phys. Rev. A 110, 043714 (2024).