References
- T. Sogabe. Krylov Subspace Methods for Linear Systems : Principles of Algorithms. No. 60 in Springer series in computational mathematics. Springer, Singapore, 2022.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning. Nature, Vol. 549, No. 7671, pp. 195–202, 2017.
- H.-Y. Huang, K. Bharti, and P. Rebentrost. Near-term quantum algorithms for linear systems of equations with regression loss functions. New Journal of Physics, Vol. 23, No. 11, 113021, 2021.
- P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, 1994.
- L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Physical Review X, Vol. 10, No. 2, 021067, 2020.
- A.W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, Vol. 103, No. 15, 150502, 2009.
- J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, Vol. 2, 79, 2018.
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles. Variational quantum algorithms. Nature Reviews Physics, Vol. 3, No. 9, pp. 625–644, 2021.
- A. T. Amos, C. Laughlin, and G. R. Moody. A generalized eigenvalue equation for the hydrogen atom. Chemical Physics Letters, Vol. 3, No. 6, pp. 411–413, 1969.
- A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, Vol. 5, No. 1, 4213, 2014.
- Michael A. Nielsen and Issac L. Chuang. Quantum Computation and Quantum Imformation. Cambride University Press, 2010.
- M. Ali and M. Kabel. Performance study of variational quantum algorithms for solving the poisson equation on a quantum computer. Phys. Rev. Appl., Vol. 20, 014054, 2023.
- F. Y. Leong, W.-B. Ewe, and D. E. Koh. Variational quantum evolution equation solver. Scientific Reports, Vol. 12, No. 1, 10817, 2022.
- F. Y. Leong, D. E. Koh, J. F. Kong, S. T. Goh, J. Y. Khoo, W.-B. Ewe, H. Li, J. Thompson, and D. Poletti. Solving fractional differential equations on a quantum computer: A variational approach. AVS Quantum Science, Vol. 6, No. 3, 033802, 2024.
- H.-L. Liu, Y.-S. Wu, L.-C. Wan, S.-J. Pan, S.-J. Qin, F. Gao, and Q.-Y. Wen. Variational quantum algorithm for the Poisson equation. Physical Review A, Vol. 104, No. 2, 022418, 2021.
- M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch. Variational quantum algorithms for nonlinear problems. Physical Review A, Vol. 101, No. 1, 010301, 2020.
- P. Over, S. Bengoechea, T. Rung, F. Clerici, L. Scandurra, E. de Villiers, and D. Jaksch. Boundary treatment for variational quantum simulations of partial differential equations on quantum computers. Computers & Fluids, Vol. 288, 106508, 2025.
- Y. Sato, R. Kondo, S. Koide, H. Takamatsu, and N. Imoto. Variational quantum algorithm based on the minimum potential energy for solving the Poisson equation. Physical Review A, Vol. 104, No. 5, 052409, 2021.
- A. Hosaka, K. Yanagisawa, S. Koshikawa, I. Kudo, X. Alifu, and T. Yoshida. Preconditioning for a variational quantum linear solver, 2023. arXiv:2312.15657 [quant-ph].
- A. J. da Silva and D. K. Park. Linear-depth quantum circuits for multiqubit controlled gates. Phys. Rev. A, Vol. 106, 042602, 2022.
- Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang. Decompositions of n-qubit toffoli gates with linear circuit complexity. International Journal of Theoretical Physics, Vol. 56, No. 7, pp. 2350–2361, 2017.
- T. Satoh, S. Oomura, M. Sugawara, and N. Yamamoto. Pulse-engineered controlled-V gate and its applications on superconducting quantum device. IEEE Transactions on Quantum Engineering, Vol. 3, pp. 1–10, 2022.
- H.-Y. Huang, R. Kueng, and J. Preskill. Predicting many properties of a quantum system from very few measurements. Nature Physics, Vol. 16, No. 10, pp. 1050–1057, 2020.
- R. Kondo, Y. Sato, S. Koide, S. Kajita, and H. Takamatsu. Computationally efficient quantum expectation with extended bell measurements. Quantum, Vol. 6, 688, 2022.
- G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, et al., Qiskit: An open-source framework for quantum computing, 2019. Available at: https://zenodo.org/record/2562111
- M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications, Vol. 12, No. 1, 1791, 2021.
- Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum, Vol. 3, 010313, 2022.
- D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of Computation, Vol. 24, No. 111, pp. 647–656, 1970.
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, Vol. 98, 032309, 2018.