Have a personal or library account? Click to login
Variational Quantum Algorithm for Solving Second-Order Linear Differential Equations Cover

Variational Quantum Algorithm for Solving Second-Order Linear Differential Equations

Open Access
|Jul 2025

References

  1. T. Sogabe. Krylov Subspace Methods for Linear Systems : Principles of Algorithms. No. 60 in Springer series in computational mathematics. Springer, Singapore, 2022.
  2. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning. Nature, Vol. 549, No. 7671, pp. 195–202, 2017.
  3. H.-Y. Huang, K. Bharti, and P. Rebentrost. Near-term quantum algorithms for linear systems of equations with regression loss functions. New Journal of Physics, Vol. 23, No. 11, 113021, 2021.
  4. P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, 1994.
  5. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Physical Review X, Vol. 10, No. 2, 021067, 2020.
  6. A.W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, Vol. 103, No. 15, 150502, 2009.
  7. J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, Vol. 2, 79, 2018.
  8. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles. Variational quantum algorithms. Nature Reviews Physics, Vol. 3, No. 9, pp. 625–644, 2021.
  9. A. T. Amos, C. Laughlin, and G. R. Moody. A generalized eigenvalue equation for the hydrogen atom. Chemical Physics Letters, Vol. 3, No. 6, pp. 411–413, 1969.
  10. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, Vol. 5, No. 1, 4213, 2014.
  11. Michael A. Nielsen and Issac L. Chuang. Quantum Computation and Quantum Imformation. Cambride University Press, 2010.
  12. M. Ali and M. Kabel. Performance study of variational quantum algorithms for solving the poisson equation on a quantum computer. Phys. Rev. Appl., Vol. 20, 014054, 2023.
  13. F. Y. Leong, W.-B. Ewe, and D. E. Koh. Variational quantum evolution equation solver. Scientific Reports, Vol. 12, No. 1, 10817, 2022.
  14. F. Y. Leong, D. E. Koh, J. F. Kong, S. T. Goh, J. Y. Khoo, W.-B. Ewe, H. Li, J. Thompson, and D. Poletti. Solving fractional differential equations on a quantum computer: A variational approach. AVS Quantum Science, Vol. 6, No. 3, 033802, 2024.
  15. H.-L. Liu, Y.-S. Wu, L.-C. Wan, S.-J. Pan, S.-J. Qin, F. Gao, and Q.-Y. Wen. Variational quantum algorithm for the Poisson equation. Physical Review A, Vol. 104, No. 2, 022418, 2021.
  16. M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch. Variational quantum algorithms for nonlinear problems. Physical Review A, Vol. 101, No. 1, 010301, 2020.
  17. P. Over, S. Bengoechea, T. Rung, F. Clerici, L. Scandurra, E. de Villiers, and D. Jaksch. Boundary treatment for variational quantum simulations of partial differential equations on quantum computers. Computers & Fluids, Vol. 288, 106508, 2025.
  18. Y. Sato, R. Kondo, S. Koide, H. Takamatsu, and N. Imoto. Variational quantum algorithm based on the minimum potential energy for solving the Poisson equation. Physical Review A, Vol. 104, No. 5, 052409, 2021.
  19. A. Hosaka, K. Yanagisawa, S. Koshikawa, I. Kudo, X. Alifu, and T. Yoshida. Preconditioning for a variational quantum linear solver, 2023. arXiv:2312.15657 [quant-ph].
  20. A. J. da Silva and D. K. Park. Linear-depth quantum circuits for multiqubit controlled gates. Phys. Rev. A, Vol. 106, 042602, 2022.
  21. Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang. Decompositions of n-qubit toffoli gates with linear circuit complexity. International Journal of Theoretical Physics, Vol. 56, No. 7, pp. 2350–2361, 2017.
  22. T. Satoh, S. Oomura, M. Sugawara, and N. Yamamoto. Pulse-engineered controlled-V gate and its applications on superconducting quantum device. IEEE Transactions on Quantum Engineering, Vol. 3, pp. 1–10, 2022.
  23. H.-Y. Huang, R. Kueng, and J. Preskill. Predicting many properties of a quantum system from very few measurements. Nature Physics, Vol. 16, No. 10, pp. 1050–1057, 2020.
  24. R. Kondo, Y. Sato, S. Koide, S. Kajita, and H. Takamatsu. Computationally efficient quantum expectation with extended bell measurements. Quantum, Vol. 6, 688, 2022.
  25. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, et al., Qiskit: An open-source framework for quantum computing, 2019. Available at: https://zenodo.org/record/2562111
  26. M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications, Vol. 12, No. 1, 1791, 2021.
  27. Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum, Vol. 3, 010313, 2022.
  28. D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of Computation, Vol. 24, No. 111, pp. 647–656, 1970.
  29. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, Vol. 98, 032309, 2018.
DOI: https://doi.org/10.2478/qic-2025-0012 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 232 - 247
Submitted on: Feb 17, 2025
Accepted on: Apr 17, 2025
Published on: Jul 1, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Ryo Sugaya, Tomohiro Sogabe, Tomoya Kemmochi, Shao-Liang Zhang, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.