References
- P. W. Shor (1994). “Algorithms for quantum computation: discrete logarithms and factoring”, in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, pp. 124–134
- P. W. Shor (1997). “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”. SIAM J. Comput. 26, 5.
- D. Deutsch (1985). “Quantum theory, the Church-turing principle and the universal quantum computer”. Proc. R. Soc. Lond. A 400, 97.
- L. Grover (1996). “A fast quantum mechanical algorithm for database search, STOC”, in 96: Proceedings 28th Annual ACM Symposium on the Theory of Computation. New York: ACM Press.
- D. Coppersmith (2002). “An approximate Fourier transform useful in quantum factoring”. IBM Research Report, RC 19642.
- Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory (2001). “Implementation of the quantum Fourier transform”. Phys. Rev. Lett. 86, 1889.
- M. A. Nielsen and I. L. Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.
- H. Wang, L. Wu, Y. Liu, and F. Nori (2010). “Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices”. Phys. Rev. A. 82, 062303.
- A. W. Harrow, A. Hassidim, and S. Lloyd (2009). “Quantum algorithm for linear systems of equations”. Phys. Rev. Lett. 103, 150502
- B. D. Clader, B. C. Jacobs, and C. R. Sprouse (2013). “Preconditioned quantum linear system algorithm”. Phys. Rev. Lett. 110, 250504.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd (2017). “Quantum machine learning”. Nature 549, 195.
- L. Wossnig, Z. Zhao, and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Phys. Rev. Lett. 120, 050502.
- X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M. Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan (2013). “Experimental quantum computing to solve systems of linear equations”. Phys. Rev. Lett. 110, 230501.
- J. W. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, and J. Du (2014). “Experimental realization of quantum algorithm for solving linear systems of equations”. Phys. Rev. A. 89, 022313.
- S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić, A. Aspuru-Guzik, and P. Walther (2014). “A two-qubit photonic quantum processor and its application to solving systems of linear equations”. Sci. Rep. 4, 6115.
- Y. Zheng, C. Song, M. C. Chen, B. Xia, W. Liu, Q. Guo, L. Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D. Zheng, L. Lu, J. W. Pan, H. Wang, C. Y. Lu, and X. Zhu (2017). “Solving systems of linear equations with a superconducting quantum processor”. Phys. Rev. Lett. 118, 210504.
- A. T.-Shma (2013). “Inverting well conditioned matrices in quantum logspace”, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC’13. New York, pp. 881–890.
- D. Aharonov and A. T.-Shma (2007). “Adiabatic quantum state generation”. SIAM Journal on Computing 37(1), 47.
- G. Brassard, P. Hoyer, M. Mosca, and A. Tapp (2002). “Quantum amplitude amplification and estimation”. Contemp. Math. 305, 53–74.
- A. M. Childs, R. Kothari, and R. D. Somma (2017). “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision”. SIAM J. Comput. 46, 1920–1950.
- A. Gilyén, Y. Su, G. H. Low, and N. Wiebe (2019). “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics”, in STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 193–204.
- G. H. Low and I. L. Chuang (2017). “Optimal Hamiltonian simulation by quantum signal processing”. Phys. Rev. Lett. 118, 010501.
- G. H. Low, T. J. Yoder, and I. L. Chuang (2016). “Methodology of resonant equiangular composite quantum gates”. Phys. Rev. X 6, 041067.
- D. An and L. Lin (2022). “Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm”. ACM Trans. Quantum Comput. 3(2), Article 5, 1–28.
- S. Jansen, M.-B. Ruskai, and R. Seiler (2007). “Bounds for the adiabatic approximation with applications to quantum computation”. J. Math. Phys. 48(10), 102111.
- Y. Subaşı, R. D. Somma, and D. Orsucci (2019). “Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing”. Phys. Rev. Lett. 122, 060504.
- T. Albash and D. A. Lidar (2018). “Adiabatic quantum computation”. Rev. Mod. Phys. 90, 015002.
- Y. Tong, D. An, N. Wiebe, and L. Lin (2021). “Fast inversion, preconditioned quantum linear system solvers, fast Green’s function computation, and fast evaluation of matrix functions”. Phys. Rev. A 104, 032422.
- S. Aaronson (2015). “Read the fine print”. Nature Phys. 11, 291–293.
- P. Rebentrost„ M. Mohseni, and S. Lloyd (2014). “Quantum support vector machine for big data classification”. Phys. Rev. Lett. 113, 130503.
- N. Wiebe, D. Braun, and S. Lloyd (2012). “Quantum algorithm for data fitting”. Phys. Rev. Lett. 109, 050505.
- M. Schuld, I. Sinayskiy, and F. Petruccione (2016). “Prediction by linear regression on a quantum computer”. Phys. Rev. A 94, 022342.
- G. Wang (2017). “Quantum algorithm for linear regression”. Phys. Rev. A 96, 012335.
- F. L. Gall, “Robust dequantization of the quantum singular value transformation and quantum machine learning algorithms,” arXiv:2304.04932 [quant-ph].
- D. W. Berry (2014). “High-order quantum algorithm for solving linear differential equations”. J. Phys. A: Math. Theor. 47(10) 105301.
- J.-P. Liu, H. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs (2021). “Efficient quantum algorithm for dissipative nonlinear differential equations”. PNAS 118(35), e2026805118.
- J. M. Martyn, Z. M. Rossi, A. K. Tan, I. L. Chuang (2021). “A grand unification of quantum algorithms”. PRX Quantum 2, 040203
- I. Novikau, I. Joseph (2024). “Estimating QSVT angles for matrix inversion with large condition numbers”. arXiv:2408.15453v2 [quant-ph]
- L. Zhao, Z. Zhao, P. Rebentrost, and J. Fitzsimons (2021). “Compiling basic linear algebra subroutines for quantum computers”. Quantum Mach. Intell. 3, 21.
- S. I. Doronin, E. B. Fel’dman, and A. I. Zenchuk (2020). “Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM quantum experience”. Quantum Inf. Process 19, 68.
- H. Li, N. Jiang, Z. Wang, J. Wang, and R. Zhou (2021). “Quantum matrix multiplier”. Int. J. Theor. Phys. 60, 2037–2048.
- R. Kothari and A. Nayak (2015). “Quantum algorithms for matrix multiplication and product verification”, in: M.-Y. Kao (eds), Encyclopedia of Algorithms, Berlin, Heidelberg: Springer.
- W. Qi, A. I. Zenchuk, A. Kumar, and J. Wu (2024). “Quantum algorithms for matrix operations and linear systems of equations”. Commun. Theor. Phys. 76, 035103.
- A. I. Zenchuk, W. Qi, A. Kumar, and J. Wu (2024). “Matrix manipulations via unitary transformations and ancilla-state measurements”. Quantum Inf. Comp. 24(13,14),1099–110.
- S. J. Berkowitz (1984). “On computing the determinant in small parallel time using a small number of processors”. Inf. Process. Lett. 18(3), 147–150.
- E. Boix-Adserá, L. Eldar, S. Mehraban, “Approximating the determinant of well-conditioned matrices by shallow circuits”. arXiv:1912.03824 [cs.DS].
- A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi (2002). “Classical and quantum computation” in Graduate Studies in Mathematics, V.47, Providence, RI: American Mathematical Society.
- E. B. Fel’dman, A. I. Zenchuk, W. Qi, and J. Wu, “Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate”, arXiv:2501.16028v1.