Have a personal or library account? Click to login
Quantum Algorithms for Calculating Determinant and Inverse of Matrix and Solving Linear Algebraic Systems Cover

Quantum Algorithms for Calculating Determinant and Inverse of Matrix and Solving Linear Algebraic Systems

Open Access
|May 2025

References

  1. P. W. Shor (1994). “Algorithms for quantum computation: discrete logarithms and factoring”, in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, pp. 124–134
  2. P. W. Shor (1997). “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”. SIAM J. Comput. 26, 5.
  3. D. Deutsch (1985). “Quantum theory, the Church-turing principle and the universal quantum computer”. Proc. R. Soc. Lond. A 400, 97.
  4. L. Grover (1996). “A fast quantum mechanical algorithm for database search, STOC”, in 96: Proceedings 28th Annual ACM Symposium on the Theory of Computation. New York: ACM Press.
  5. D. Coppersmith (2002). “An approximate Fourier transform useful in quantum factoring”. IBM Research Report, RC 19642.
  6. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory (2001). “Implementation of the quantum Fourier transform”. Phys. Rev. Lett. 86, 1889.
  7. M. A. Nielsen and I. L. Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.
  8. H. Wang, L. Wu, Y. Liu, and F. Nori (2010). “Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices”. Phys. Rev. A. 82, 062303.
  9. A. W. Harrow, A. Hassidim, and S. Lloyd (2009). “Quantum algorithm for linear systems of equations”. Phys. Rev. Lett. 103, 150502
  10. B. D. Clader, B. C. Jacobs, and C. R. Sprouse (2013). “Preconditioned quantum linear system algorithm”. Phys. Rev. Lett. 110, 250504.
  11. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd (2017). “Quantum machine learning”. Nature 549, 195.
  12. L. Wossnig, Z. Zhao, and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Phys. Rev. Lett. 120, 050502.
  13. X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M. Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan (2013). “Experimental quantum computing to solve systems of linear equations”. Phys. Rev. Lett. 110, 230501.
  14. J. W. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, and J. Du (2014). “Experimental realization of quantum algorithm for solving linear systems of equations”. Phys. Rev. A. 89, 022313.
  15. S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić, A. Aspuru-Guzik, and P. Walther (2014). “A two-qubit photonic quantum processor and its application to solving systems of linear equations”. Sci. Rep. 4, 6115.
  16. Y. Zheng, C. Song, M. C. Chen, B. Xia, W. Liu, Q. Guo, L. Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D. Zheng, L. Lu, J. W. Pan, H. Wang, C. Y. Lu, and X. Zhu (2017). “Solving systems of linear equations with a superconducting quantum processor”. Phys. Rev. Lett. 118, 210504.
  17. A. T.-Shma (2013). “Inverting well conditioned matrices in quantum logspace”, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC’13. New York, pp. 881–890.
  18. D. Aharonov and A. T.-Shma (2007). “Adiabatic quantum state generation”. SIAM Journal on Computing 37(1), 47.
  19. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp (2002). “Quantum amplitude amplification and estimation”. Contemp. Math. 305, 53–74.
  20. A. M. Childs, R. Kothari, and R. D. Somma (2017). “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision”. SIAM J. Comput. 46, 1920–1950.
  21. A. Gilyén, Y. Su, G. H. Low, and N. Wiebe (2019). “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics”, in STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 193–204.
  22. G. H. Low and I. L. Chuang (2017). “Optimal Hamiltonian simulation by quantum signal processing”. Phys. Rev. Lett. 118, 010501.
  23. G. H. Low, T. J. Yoder, and I. L. Chuang (2016). “Methodology of resonant equiangular composite quantum gates”. Phys. Rev. X 6, 041067.
  24. D. An and L. Lin (2022). “Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm”. ACM Trans. Quantum Comput. 3(2), Article 5, 1–28.
  25. S. Jansen, M.-B. Ruskai, and R. Seiler (2007). “Bounds for the adiabatic approximation with applications to quantum computation”. J. Math. Phys. 48(10), 102111.
  26. Y. Subaşı, R. D. Somma, and D. Orsucci (2019). “Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing”. Phys. Rev. Lett. 122, 060504.
  27. T. Albash and D. A. Lidar (2018). “Adiabatic quantum computation”. Rev. Mod. Phys. 90, 015002.
  28. Y. Tong, D. An, N. Wiebe, and L. Lin (2021). “Fast inversion, preconditioned quantum linear system solvers, fast Green’s function computation, and fast evaluation of matrix functions”. Phys. Rev. A 104, 032422.
  29. S. Aaronson (2015). “Read the fine print”. Nature Phys. 11, 291–293.
  30. P. Rebentrost„ M. Mohseni, and S. Lloyd (2014). “Quantum support vector machine for big data classification”. Phys. Rev. Lett. 113, 130503.
  31. N. Wiebe, D. Braun, and S. Lloyd (2012). “Quantum algorithm for data fitting”. Phys. Rev. Lett. 109, 050505.
  32. M. Schuld, I. Sinayskiy, and F. Petruccione (2016). “Prediction by linear regression on a quantum computer”. Phys. Rev. A 94, 022342.
  33. G. Wang (2017). “Quantum algorithm for linear regression”. Phys. Rev. A 96, 012335.
  34. F. L. Gall, “Robust dequantization of the quantum singular value transformation and quantum machine learning algorithms,” arXiv:2304.04932 [quant-ph].
  35. D. W. Berry (2014). “High-order quantum algorithm for solving linear differential equations”. J. Phys. A: Math. Theor. 47(10) 105301.
  36. J.-P. Liu, H. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs (2021). “Efficient quantum algorithm for dissipative nonlinear differential equations”. PNAS 118(35), e2026805118.
  37. J. M. Martyn, Z. M. Rossi, A. K. Tan, I. L. Chuang (2021). “A grand unification of quantum algorithms”. PRX Quantum 2, 040203
  38. I. Novikau, I. Joseph (2024). “Estimating QSVT angles for matrix inversion with large condition numbers”. arXiv:2408.15453v2 [quant-ph]
  39. L. Zhao, Z. Zhao, P. Rebentrost, and J. Fitzsimons (2021). “Compiling basic linear algebra subroutines for quantum computers”. Quantum Mach. Intell. 3, 21.
  40. S. I. Doronin, E. B. Fel’dman, and A. I. Zenchuk (2020). “Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM quantum experience”. Quantum Inf. Process 19, 68.
  41. H. Li, N. Jiang, Z. Wang, J. Wang, and R. Zhou (2021). “Quantum matrix multiplier”. Int. J. Theor. Phys. 60, 2037–2048.
  42. R. Kothari and A. Nayak (2015). “Quantum algorithms for matrix multiplication and product verification”, in: M.-Y. Kao (eds), Encyclopedia of Algorithms, Berlin, Heidelberg: Springer.
  43. W. Qi, A. I. Zenchuk, A. Kumar, and J. Wu (2024). “Quantum algorithms for matrix operations and linear systems of equations”. Commun. Theor. Phys. 76, 035103.
  44. A. I. Zenchuk, W. Qi, A. Kumar, and J. Wu (2024). “Matrix manipulations via unitary transformations and ancilla-state measurements”. Quantum Inf. Comp. 24(13,14),1099–110.
  45. S. J. Berkowitz (1984). “On computing the determinant in small parallel time using a small number of processors”. Inf. Process. Lett. 18(3), 147–150.
  46. E. Boix-Adserá, L. Eldar, S. Mehraban, “Approximating the determinant of well-conditioned matrices by shallow circuits”. arXiv:1912.03824 [cs.DS].
  47. A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi (2002). “Classical and quantum computation” in Graduate Studies in Mathematics, V.47, Providence, RI: American Mathematical Society.
  48. E. B. Fel’dman, A. I. Zenchuk, W. Qi, and J. Wu, “Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate”, arXiv:2501.16028v1.
DOI: https://doi.org/10.2478/qic-2025-0010 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 195 - 215
Submitted on: Dec 29, 2024
Accepted on: Apr 2, 2025
Published on: May 26, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Alexander I. Zenchuk, Georgii A. Bochkin, Wentao Qi, Asutosh Kumar, Junde Wu, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.