Have a personal or library account? Click to login
A Survey on Continuous Variable Quantum Key Distribution for Secure Data Transmission: Toward the Future of Secured Quantum-Networks Cover

A Survey on Continuous Variable Quantum Key Distribution for Secure Data Transmission: Toward the Future of Secured Quantum-Networks

Open Access
|May 2025

References

  1. D. Stucki et al. (2011). “Long-term performance of the SwissQuantum quantum key distribution network in a field environment”. New Journal of Physics, 13: 12, 123001.
  2. M. Sasaki et al. (2011). “Field test of quantum key distribution in the Tokyo QKD Network”. Optics Express, 19: 11, 10387–10409.
  3. R. J. Hughes, J. E. Nordholt, K. P. McCabe, R. T. Newell, C. G. Peterson, and R. D. Somma (2013). “Network-centric quantum communications with application to critical infrastructure protection”. arXiv preprint arXiv:1305.0305.
  4. H.-K. Lo, M. Curty, and K. Tamaki (2014). “Secure quantum key distribution”. Nature Photonics, 8: 8, 595–604.
  5. A. Orieux and E. Diamanti (2016). “Recent advances on integrated quantum communications”. Journal of Optics, 18: 8, 083002.
  6. P. Sibson et al. (2017). “Chip-based quantum key distribution”. Nature Communications, 8: 1, 13984.
  7. S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky (2012). “On the genesis and evolution of integrated quantum optics”. Laser & Photonics Reviews, 6: 1, 115–143.
  8. P. Zhang et al. (2014). “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client”. Physical Review Letters, 112: 13, 130501.
  9. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien (2008). “Silica-on-silicon waveguide quantum circuits”. Science, 320: 5876, 646–649
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao (1996). “Writing waveguides in glass with a femtosecond laser”. Optics Letters, 21: 21, 1729–1731.
  11. J. G. Huang et al. (2017). “Torsional frequency mixing and sensing in optomechanical resonators”. Applied Physics Letters, 111: 11.
  12. Y. Shi et al. (2018). “Nanometer-precision linear sorting with synchronized optofluidic dual barriers”. Science Advances, 4: 1, p. eaao0773.
  13. Y. Z. Shi et al. (2018). “Sculpting nanoparticle dynamics for single-bacteria-level screening and direct bindingefficiency measurement”. Nature Communications, 9: 1, 815.
  14. A. Boaron et al. (2018). “Secure quantum key distribution over 421 km of optical fiber”. Physical Review Letters, 121: 19, 190502.
  15. H.-L. Yin et al. (2016). “Measurement-device-independent quantum key distribution over a 404 km optical fiber”. Physical Review Letters, 117: 19, 190501.
  16. Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng (2017). “Continuous variable quantum key distribution”. Chinese Physics B, 26: 4, 040303.
  17. C. H. Bennett and G. Brassard (2014). “Quantum cryptography: Public key distribution and coin tossing”. Theoretical Computer Science, 560: 7–11.
  18. C. H. Bennett (1992). “Quantum cryptography using any two nonorthogonal states”. Physical Review Letters, 68: 21, 3121.
  19. A. K. Ekert (1991). “Quantum cryptography and Bell’s theorem”. Quantum Measurements in Optics, 413–418.
  20. L. Ma et al. (2023). “Practical continuous-variable quantum key distribution with feasible optimization parameters”. Science China Information Sciences, 66: 8, 180507.
  21. S. Sarmiento et al. (2022). “Continuous-variable quantum key distribution over a 15 km multi-core fiber”. New Journal of Physics, 24: 6, 063011.
  22. Y. Zhang, Y. Bian, Z. Li, S. Yu, and H. Guo (2024). “Continuous-variable quantum key distribution system: Past, present, and future”. Applied Physics Reviews, 11: 1.
  23. S. Pirandola (2021). “Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks”. Physical Review Research, 3: 4, 043014.
  24. N. Wang, S. Du, W. Liu, X. Wang, Y. Li, and K. Peng (2018). “Long-distance continuous-variable quantum key distribution with entangled states”. Physical Review Applied, 10: 6, 064028.
  25. C. Weedbrook et al. (2012). “Gaussian quantum information”. Reviews of Modern Physics, 84: 2, 621–669.
  26. G. Adesso, S. Ragy, and A. R. Lee (2014). “Continuous variable quantum information: Gaussian states and beyond”. Open Systems & Information Dynamics, 21: 01n02, 1440001.
  27. A. Ferraro, S. Olivares, and M. G. Paris (2005). “Gaussian states in continuous variable quantum information”. arXiv preprint quant-ph/0503237.
  28. I. W. Primaatmaja, W. Y. Kon, and C. Lim (2024). “Discrete-modulated continuous-variable quantum key distribution secure against general attacks”. arXiv preprint arXiv:2409.02630.
  29. N. Alshaer, T. Ismail, and H. Mahmoud (2024). “Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)”. Sensors, 24: 16, 5201.
  30. S. Bäuml, C. Pascual-García, V. Wright, O. Fawzi, and A. Acín (2024). “Security of discrete-modulated continuous-variable quantum key distribution”. Quantum, 8: 1418.
  31. P. Papanastasiou, C. Ottaviani, and S. Pirandola (2021). “Security of continuous-variable quantum key distribution against canonical attacks”, in 2021 International Conference on Computer Communications and Networks (ICCCN): IEEE, 1–6.
  32. A. G. Mountogiannakis, P. Papanastasiou, B. Braverman, and S. Pirandola (2022). “Composably secure data processing for Gaussian-modulated continuous-variable quantum key distribution”. Physical Review Research, 4: 1, 013099.
  33. L. d. S. Aguiar, L. F. Borelli, J. A. Roversi, and A. Vidiella-Barranco (2022). “Performance analysis of continuous-variable quantum key distribution using non-Gaussian states”. Quantum Information Processing, 21: 8, 304.
  34. N. Hosseinidehaj, A. M. Lance, T. Symul, N. Walk, and T. C. Ralph (2020). “Finite-size effects in continuous-variable quantum key distribution with Gaussian postselection”. Physical Review A, 101: 5, 052335.
  35. N. K. Long, R. Malaney, and K. J. Grant (2022). “A survey of machine learning assisted continuous-variable quantum key distribution”. Information, 14: 10, 553.
  36. H.-M. Chin, N. Jain, D. Zibar, U. L. Andersen, and T. Gehring (2021). “Machine learning aided carrier recovery in continuous-variable quantum key distribution”. npj Quantum Information, 7: 1, 20.
  37. Q. Liao, J. Liu, A. Huang, L. Huang, Z. Fei, and X. Fu (2023). “High-rate discretely-modulated continuous-variable quantum key distribution using quantum machine learning”. arXiv preprint arXiv:2308.03283.
  38. W.-B. Liu, C.-L. Li, Z.-P. Liu, M.-G. Zhou, H.-L. Yin, and Z.-B. Chen (2022). “Theoretical development of discrete-modulated continuous-variable quantum key distribution”. (in English), Frontiers in Quantum Science and Technology, Mini Review, 1: 985276, doi: 10.3389/frqst.2022.985276.
  39. Y. Yan et al. (2023). “Artificial key fingerprints for continuous-variable quantum key distribution”. Physical Review A, 108: 1, 012601, doi: 10.1103/PhysRevA.108.012601.
  40. C. Ding, S. Wang, Y. Wang, Z. Wu, J. Sun, and Y. Mao (2023). “Machine-learning-based detection for quantum hacking attacks on continuous-variable quantum-key-distribution systems”. Physical Review A, 107: 6, 062422, doi: 10.1103/PhysRevA.107.062422.
  41. D. F. Walls (1983). “Squeezed states of light”. Nature, 306: 5939, 141–146.
  42. H. Lin and Y. Shang (2024). “Deterministic search on complete bipartite graphs by continuous time quantum walk”. arXiv preprint arXiv:2404.01640.
  43. B. Zhang and Q. Zhuang (2021). “Entanglement formation in continuous-variable random quantum networks”. npj Quantum Information, 7: 1, 33.
  44. C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex (2017). “Gaussian boson sampling”. Physical Review Letters, 119: 17, 170501.
  45. H.-S. Zhong et al. (2020). “Quantum computational advantage using photons”. Science, 370: 6523, 1460–1463.
  46. H.-S. Zhong et al. (2021). “Phase-programmable gaussian boson sampling using stimulated squeezed light”. Physical Review Letters, 127: 18, 180502.
  47. A. Czerwinski (2024). “Quantum state tomography of photonic qubits with realistic coherent light sources”. Quantum Information & Computation, 24: 31–39.
  48. R. Schnabel (2017). “Squeezed states of light and their applications in laser interferometers”. Physics Reports, 684: 1–51.
  49. H. Vahlbruch et al. (2008). “Observation of squeezed light with 10–dB quantum-noise reduction”. Physical Review Letters, 100: 3, 033602.
  50. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel (2016). “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency”. Physical Review Letters, 117: 11, 110801.
  51. S. Du and Z. Bai (2024). “State convertibility under genuinely incoherent operations”. Quantum Information & Computation, 24: 17–30.
  52. S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola (2015). “Microwave quantum illumination”. Physical Review Letters, 114: 8, 080503.
  53. H. Wang et al. (2020). “Observation of intensity squeezing in resonance fluorescence from a solid-state device”. Physical Review Letters, 125: 15, 153601.
  54. M. Sabatini, T. Bertapelle, P. Villoresi, G. Vallone, and M. Avesani (2024), “Hybrid encoder for discrete and continuous variable QKD”. arXiv preprint arXiv:2408.17412.
  55. R. Loudon and P. L. Knight (1987). “Squeezed light”. Journal of Modern Optics, 34: 6–7, 709–759.
  56. A. I. Lvovsky (2015). “Squeezed light”. Photonics: Scientific Foundations, Technology and Applications, 1: 121–163.
  57. B. E. Saleh and M. C. Teich (2019). Fundamentals of Photonics. John Wiley & Sons.
  58. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger (1997). “Experimental quantum teleportation”. Nature, 390: 6660, 575–579.
  59. M. B. Plenio and S. Virmani (2005). “An introduction to entanglement measures”. arXiv preprint quant-ph/0504163.
  60. M. Motaharifar, H. Kaatuzian, and M. Hasani (2023). “Possible teleportation of quantum states using squeezed sources and photonic integrated circuits”, in 2023 5th Iranian International Conference on Microelectronics (IICM), IEEE, 227–232.
  61. L. Albano, D. Mundarain, and J. Stephany (2002). “On the squeezed number states and their phase space representations”. Journal of Optics B: Quantum and Semiclassical Optics, 4: 5, 352.
  62. M. A. Nielsen and I. L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  63. M. Motaharifar and H. Kaatuzian (2023). “Mach-Zehnder interferometer cell for realization of quantum computer; a feasibility study”, in 2023 31st International Conference on Electrical Engineering (ICEE). IEEE, 762–767.
  64. D. Dai and J. E. Bowers (2011). “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler”. Optics Express, 19: 19, 18614–18620.
  65. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers (2013). “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler”. Optics Letters, 38: 1, 4–6.
  66. T. C. Ralph (1999). “Continuous variable quantum cryptography”. Physical Review A, 61: 1, 010303.
  67. M. Hillery (2000). “Quantum cryptography with squeezed states”. Physical Review A, 61: 2, 022309.
  68. M. D. Reid (2000). “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations”. Physical Review A, 62: 6, 062308.
  69. N. J. Cerf, M. Levy, and G. Van Assche (2001). “Quantum distribution of Gaussian keys using squeezed states”. Physical Review A, 63: 5, 052311.
  70. D. Gottesman and J. Preskill (2003). Quantum Information with Continuous Variables. Springer Dordrecht.
  71. F. Grosshans and P. Grangier (2002). “Continuous variable quantum cryptography using coherent states”. Physical Review Letters, 88: 5, 057902.
  72. A. Leverrier and P. Grangier (2009). “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation”. Physical Review Letters, 102: 18, 180504.
  73. X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng (2009). “Continuous variable quantum key distribution based on optical entangled states without signal modulation”. Europhysics Letters, 87: 2, 20005.
  74. A. Denys, P. Brown, and A. Leverrier (2021). “Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation”. Quantum, 5: 540.
  75. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen (2012). “Continuous variable quantum key distribution with modulated entangled states”. Nature Communications, 3: 1, 1083.
  76. V. C. Usenko and R. Filip (2011). “Squeezed-state quantum key distribution upon imperfect reconciliation”. New Journal of Physics, 13: 11, 113007.
  77. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam (2004). “Quantum cryptography without switching”. Physical Review Letters, 93: 17, 170504.
  78. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam (2005). “No-switching quantum key distribution using broadband modulated coherent light”. Physical Review Letters, 95: 18, 80503.
  79. R. García-Patrón and N. J. Cerf (2009). “Continuous-variable quantum key distribution protocols over noisy channels”. Physical Review Letters, 102: 13, 130501.
  80. J. Lodewyck et al. (2007). “Quantum key distribution over 25 km with an all-fiber continuous-variable system”. Physical Review A—Atomic, Molecular, and Optical Physics, 76: 4, 042305.
  81. F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier (2003). “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables”. arXiv preprint quant-ph/0306141
  82. G. Roberts et al. (2018). “Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution”. Optics Letters, 43: 20, 5110–5113.
  83. H.-K. Lo, M. Curty, and B. Qi (2012). “Measurement-device-independent quantum key distribution”. Physical Review Letters, 108: 13, 130503, doi: 10.1103/PhysRevLett.108.130503.
  84. Y. Ding et al. (2017). “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits”. npj Quantum Information, 3: 1, 25.
  85. C. Ma et al. (2016). “Silicon photonic transmitter for polarization-encoded quantum key distribution”. Optica, 3: 11, 1274–1278.
  86. P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson (2017). “Integrated silicon photonics for high-speed quantum key distribution”. Optica, 4: 2, 172–177.
  87. F. Najafi et al. (2015). “On-chip detection of non-classical light by scalable integration of single-photon detectors”. Nature Communications, 6: 1, 5873.
  88. W. H. Pernice et al. (2012). “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits”. Nature Communications, 3: 1, 1325.
  89. M. Ziebell et al. (2015). “Towards on-chip continuous-variable quantum key distribution”, in The European Conference on Lasers and Electro-Optics. Optica Publishing Group.
  90. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti (2013). “Experimental demonstration of long-distance continuous-variable quantum key distribution”. Nature Photonics, 7: 5, 378–381.
  91. D. Huang, P. Huang, D. Lin, and G. Zeng (2016). “Long-distance continuous-variable quantum key distribution by controlling excess noise”. Scientific Reports, 6: 1, 19201.
  92. F. Raffaelli et al. (2018). “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers”. Quantum Science and Technology, 3: 2, 025003.
  93. M. Rudé et al. (2018). “Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources”. Optics Express, 26: 24, 31957–31964.
  94. F. Raffaelli, P. Sibson, J. E. Kennard, D. H. Mahler, M. G. Thompson, and J. C. Matthews (2018). “Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip”. Optics Express, 26: 16, 19730–19741.
  95. C. Abellan et al. (2016). “Quantum entropy source on an InP photonic integrated circuit for random number generation”. Optica, 3: 9, 989–994.
  96. P. Kaur, A. Boes, G. Ren, T. G. Nguyen, G. Roelkens, and A. Mitchell, (2021). “Hybrid and heterogeneous photonic integration”. APL Photonics, 6, 6.
  97. K. Jaksch et al. (2024). “Composable free-space continuous-variable quantum key distribution using discrete modulation”. arXiv preprint arXiv:2410.12915.
  98. Y. Xu et al. (2021). “Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements”. Scientific Reports, 11: 1, 16426.
  99. C. Koos et al. (2013). “Photonic wire bonding: An enabling technology for heterogeneous multi-chip integration”, in Integrated Photonics Research, Silicon and Nanophotonics. Optica Publishing Group.
  100. M. Hasani, H. Kaatuzian, and M. Motaharifar, (2023). “Stochastic mass-spring model for the generation of squeezed state of light”, in Laser Science. Optica Publishing Group.
  101. S. Zhao et al. (2024). “Broadband amplitude squeezing at room temperature in electrically driven quantum dot lasers”. Physical Review Research, 6: 3, L032021.
  102. M. Hasani and M. Motaharifar, (2024). “Experimental realization of spontaneous parametric down conversion”.
  103. M. Rabiei, H. Kaatuzian, M. Hasani, and A. Shircharandabi, (2024). “Analysis of squeezed light generation via SFWM in a Si3N4microring resonator”, in Frontiers in Optics. Optica Publishing Group.
  104. A. Shircharandabi, H. Kaatuzian, M. Hasani, and M. Rabiei, (2024). “Investigation of squeezed-state generation using SFWM in a SiO2 microring resonator”, in Laser Science. Optica Publishing Group.
  105. E. Engin et al. (2013). “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement”. Optics Express, 21: 23, 27826–27834.
  106. J. M. Arrazola et al. (2021). “Quantum circuits with many photons on a programmable nanophotonic chip”. Nature, 591: 7848, 54–60.
  107. M. A. Broome et al. (2013). “Photonic boson sampling in a tunable circuit”. Science, 339: 6121, 794–798.
  108. A. Molina and J. Watrous, (2019). “Revisiting the simulation of quantum Turing machines by quantum circuits”. Proceedings of the Royal Society A, 475: 2226, 20180767.
  109. R. Nagai, T. Tomono, and Y. Minato, (2021). “Simulation of Continuous-Variable Quantum Systems with Tensor Network”. in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 437–438.
  110. Q. Zhang, H. Lai, J. Pieprzyk, and L. Pan, (2022). “An improved quantum network communication model based on compressed tensor network states”. Quantum Information Processing, 21: 7, 253.
  111. Q. Zhang, H. Lai, and J. Pieprzyk, (2022). “Quantum-key-expansion protocol based on number-stateentanglement-preserving tensor network with compression”. Physical Review A, 105: 3, 032439.
  112. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, (2013). “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks”. Physical Review Letters, 111: 13, 130501, doi: 10.1103/PhysRevLett.111.130501.
  113. T. Li, Z. Gao, and Z. Li, (2020). “Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator”. Europhysics Letters, 131: 6, 60001.
  114. Y. Cao et al. (2020). “Long-distance free-space measurement-device-independent quantum key distribution”. Physical Review Letters, 125: 26, 260503.
  115. Y.-H. Li et al. (2023). “Free-space and fiber-integrated measurement-device-independent quantum key distribution under high background noise”. Physical Review Letters, 131: 10, 100802.
  116. L. Cao et al. (2020). “Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems”. Physical Review Applied, 14: 1, 011001.
  117. Q. Liao, Y. Wang, D. Huang, and Y. Guo, (2018). “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution”. Optics Express, 26: 16, 19907–19920.
  118. P. Wang, Y. Tian, and Y. Li, (2025). “Advances in continuous variable measurement-device-independent quantum key distribution”. arXiv preprint arXiv:2502.16448.
  119. Y.-C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, and H. Guo, (2014). “Continuous-variable measurementdevice-independent quantum key distribution using squeezed states”. Physical Review A,. 90: 5, 052325, doi: 10.1103/PhysRevA.90.052325.
  120. L. Fan, Y. Bian, Y. Zhang, and S. Yu, (2022). “Free-space continuous-variable quantum key distribution with imperfect detector against uniform fast-fading channels”. Symmetry, 14: 6, 1271. https://www.mdpi.com/2073-8994/14/6/1271.
  121. L. Ruppert et al. (2019). “Fading channel estimation for free-space continuous-variable secure quantum communication”. New Journal of Physics, 21: 12, 123036.
  122. R. Zhao, J. Zhou, R. Shi, and J. Shi, (2024). “Unidimensional continuous variable quantum key distribution under fast fading channel”. Annalen der Physik, 536: 5, 2300401.
  123. F. Yang, D. Qiu, and P. Mateus, (2023). “Continuous-variable quantum secret sharing in fast-fluctuating channels”. IEEE Transactions on Quantum Engineering, 4: 1–9.
  124. P. Papanastasiou, C. Weedbrook, and S. Pirandola, (2018). “Continuous-variable quantum key distribution in uniform fast-fading channels”. Physical Review A, 97: 3, 032311, doi: 10.1103/PhysRevA.97.032311.
  125. S. Pirandola et al. (2015). “MDI-QKD: Continuous-versus discrete-variables at metropolitan distances”. arXiv preprint arXiv:1506.06748.
  126. P. Wang, X. Wang, and Y. Li, (2019). “Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers”. Physical Review A, 99: 4, 042309, doi: 10.1103/PhysRevA.99.042309.
  127. E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, (2016). “Practical challenges in quantum key distribution”. npj Quantum Information, 2: 1, 1–12.
  128. C. M. Knaut et al. (2024). “Entanglement of nanophotonic quantum memory nodes in a telecom network”. Nature, 629: 8012, 573–578.
  129. É. Dumur et al. (2021). “Quantum communication with itinerant surface acoustic wave phonons”. npj Quantum Information, 7: 1, 173.
  130. R. Yanagimoto, P. L. McMahon, E. Ng, T. Onodera, and H. Mabuchi, (2019). “Embedding entanglement generation within a measurement-feedback coherent Ising machine”. arXiv preprint arXiv:1906.04902.
  131. Y. Inui and Y. Yamamoto, (2020). “Entanglement and quantum discord in optically coupled coherent Ising machines”. Physical Review A, 102: 6, 062419.
DOI: https://doi.org/10.2478/qic-2025-0009 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 175 - 194
Submitted on: Dec 13, 2024
|
Accepted on: Mar 9, 2025
|
Published on: May 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Mobin Motaharifar, Mahmood Hasani, Hassan Kaatuzian, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.