References
- D. Stucki et al. (2011). “Long-term performance of the SwissQuantum quantum key distribution network in a field environment”. New Journal of Physics, 13: 12, 123001.
- M. Sasaki et al. (2011). “Field test of quantum key distribution in the Tokyo QKD Network”. Optics Express, 19: 11, 10387–10409.
- R. J. Hughes, J. E. Nordholt, K. P. McCabe, R. T. Newell, C. G. Peterson, and R. D. Somma (2013). “Network-centric quantum communications with application to critical infrastructure protection”. arXiv preprint arXiv:1305.0305.
- H.-K. Lo, M. Curty, and K. Tamaki (2014). “Secure quantum key distribution”. Nature Photonics, 8: 8, 595–604.
- A. Orieux and E. Diamanti (2016). “Recent advances on integrated quantum communications”. Journal of Optics, 18: 8, 083002.
- P. Sibson et al. (2017). “Chip-based quantum key distribution”. Nature Communications, 8: 1, 13984.
- S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky (2012). “On the genesis and evolution of integrated quantum optics”. Laser & Photonics Reviews, 6: 1, 115–143.
- P. Zhang et al. (2014). “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client”. Physical Review Letters, 112: 13, 130501.
- A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien (2008). “Silica-on-silicon waveguide quantum circuits”. Science, 320: 5876, 646–649
- K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao (1996). “Writing waveguides in glass with a femtosecond laser”. Optics Letters, 21: 21, 1729–1731.
- J. G. Huang et al. (2017). “Torsional frequency mixing and sensing in optomechanical resonators”. Applied Physics Letters, 111: 11.
- Y. Shi et al. (2018). “Nanometer-precision linear sorting with synchronized optofluidic dual barriers”. Science Advances, 4: 1, p. eaao0773.
- Y. Z. Shi et al. (2018). “Sculpting nanoparticle dynamics for single-bacteria-level screening and direct bindingefficiency measurement”. Nature Communications, 9: 1, 815.
- A. Boaron et al. (2018). “Secure quantum key distribution over 421 km of optical fiber”. Physical Review Letters, 121: 19, 190502.
- H.-L. Yin et al. (2016). “Measurement-device-independent quantum key distribution over a 404 km optical fiber”. Physical Review Letters, 117: 19, 190501.
- Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng (2017). “Continuous variable quantum key distribution”. Chinese Physics B, 26: 4, 040303.
- C. H. Bennett and G. Brassard (2014). “Quantum cryptography: Public key distribution and coin tossing”. Theoretical Computer Science, 560: 7–11.
- C. H. Bennett (1992). “Quantum cryptography using any two nonorthogonal states”. Physical Review Letters, 68: 21, 3121.
- A. K. Ekert (1991). “Quantum cryptography and Bell’s theorem”. Quantum Measurements in Optics, 413–418.
- L. Ma et al. (2023). “Practical continuous-variable quantum key distribution with feasible optimization parameters”. Science China Information Sciences, 66: 8, 180507.
- S. Sarmiento et al. (2022). “Continuous-variable quantum key distribution over a 15 km multi-core fiber”. New Journal of Physics, 24: 6, 063011.
- Y. Zhang, Y. Bian, Z. Li, S. Yu, and H. Guo (2024). “Continuous-variable quantum key distribution system: Past, present, and future”. Applied Physics Reviews, 11: 1.
- S. Pirandola (2021). “Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks”. Physical Review Research, 3: 4, 043014.
- N. Wang, S. Du, W. Liu, X. Wang, Y. Li, and K. Peng (2018). “Long-distance continuous-variable quantum key distribution with entangled states”. Physical Review Applied, 10: 6, 064028.
- C. Weedbrook et al. (2012). “Gaussian quantum information”. Reviews of Modern Physics, 84: 2, 621–669.
- G. Adesso, S. Ragy, and A. R. Lee (2014). “Continuous variable quantum information: Gaussian states and beyond”. Open Systems & Information Dynamics, 21: 01n02, 1440001.
- A. Ferraro, S. Olivares, and M. G. Paris (2005). “Gaussian states in continuous variable quantum information”. arXiv preprint quant-ph/0503237.
- I. W. Primaatmaja, W. Y. Kon, and C. Lim (2024). “Discrete-modulated continuous-variable quantum key distribution secure against general attacks”. arXiv preprint arXiv:2409.02630.
- N. Alshaer, T. Ismail, and H. Mahmoud (2024). “Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)”. Sensors, 24: 16, 5201.
- S. Bäuml, C. Pascual-García, V. Wright, O. Fawzi, and A. Acín (2024). “Security of discrete-modulated continuous-variable quantum key distribution”. Quantum, 8: 1418.
- P. Papanastasiou, C. Ottaviani, and S. Pirandola (2021). “Security of continuous-variable quantum key distribution against canonical attacks”, in 2021 International Conference on Computer Communications and Networks (ICCCN): IEEE, 1–6.
- A. G. Mountogiannakis, P. Papanastasiou, B. Braverman, and S. Pirandola (2022). “Composably secure data processing for Gaussian-modulated continuous-variable quantum key distribution”. Physical Review Research, 4: 1, 013099.
- L. d. S. Aguiar, L. F. Borelli, J. A. Roversi, and A. Vidiella-Barranco (2022). “Performance analysis of continuous-variable quantum key distribution using non-Gaussian states”. Quantum Information Processing, 21: 8, 304.
- N. Hosseinidehaj, A. M. Lance, T. Symul, N. Walk, and T. C. Ralph (2020). “Finite-size effects in continuous-variable quantum key distribution with Gaussian postselection”. Physical Review A, 101: 5, 052335.
- N. K. Long, R. Malaney, and K. J. Grant (2022). “A survey of machine learning assisted continuous-variable quantum key distribution”. Information, 14: 10, 553.
- H.-M. Chin, N. Jain, D. Zibar, U. L. Andersen, and T. Gehring (2021). “Machine learning aided carrier recovery in continuous-variable quantum key distribution”. npj Quantum Information, 7: 1, 20.
- Q. Liao, J. Liu, A. Huang, L. Huang, Z. Fei, and X. Fu (2023). “High-rate discretely-modulated continuous-variable quantum key distribution using quantum machine learning”. arXiv preprint arXiv:2308.03283.
- W.-B. Liu, C.-L. Li, Z.-P. Liu, M.-G. Zhou, H.-L. Yin, and Z.-B. Chen (2022). “Theoretical development of discrete-modulated continuous-variable quantum key distribution”. (in English), Frontiers in Quantum Science and Technology, Mini Review, 1: 985276, doi: 10.3389/frqst.2022.985276.
- Y. Yan et al. (2023). “Artificial key fingerprints for continuous-variable quantum key distribution”. Physical Review A, 108: 1, 012601, doi: 10.1103/PhysRevA.108.012601.
- C. Ding, S. Wang, Y. Wang, Z. Wu, J. Sun, and Y. Mao (2023). “Machine-learning-based detection for quantum hacking attacks on continuous-variable quantum-key-distribution systems”. Physical Review A, 107: 6, 062422, doi: 10.1103/PhysRevA.107.062422.
- D. F. Walls (1983). “Squeezed states of light”. Nature, 306: 5939, 141–146.
- H. Lin and Y. Shang (2024). “Deterministic search on complete bipartite graphs by continuous time quantum walk”. arXiv preprint arXiv:2404.01640.
- B. Zhang and Q. Zhuang (2021). “Entanglement formation in continuous-variable random quantum networks”. npj Quantum Information, 7: 1, 33.
- C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex (2017). “Gaussian boson sampling”. Physical Review Letters, 119: 17, 170501.
- H.-S. Zhong et al. (2020). “Quantum computational advantage using photons”. Science, 370: 6523, 1460–1463.
- H.-S. Zhong et al. (2021). “Phase-programmable gaussian boson sampling using stimulated squeezed light”. Physical Review Letters, 127: 18, 180502.
- A. Czerwinski (2024). “Quantum state tomography of photonic qubits with realistic coherent light sources”. Quantum Information & Computation, 24: 31–39.
- R. Schnabel (2017). “Squeezed states of light and their applications in laser interferometers”. Physics Reports, 684: 1–51.
- H. Vahlbruch et al. (2008). “Observation of squeezed light with 10–dB quantum-noise reduction”. Physical Review Letters, 100: 3, 033602.
- H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel (2016). “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency”. Physical Review Letters, 117: 11, 110801.
- S. Du and Z. Bai (2024). “State convertibility under genuinely incoherent operations”. Quantum Information & Computation, 24: 17–30.
- S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola (2015). “Microwave quantum illumination”. Physical Review Letters, 114: 8, 080503.
- H. Wang et al. (2020). “Observation of intensity squeezing in resonance fluorescence from a solid-state device”. Physical Review Letters, 125: 15, 153601.
- M. Sabatini, T. Bertapelle, P. Villoresi, G. Vallone, and M. Avesani (2024), “Hybrid encoder for discrete and continuous variable QKD”. arXiv preprint arXiv:2408.17412.
- R. Loudon and P. L. Knight (1987). “Squeezed light”. Journal of Modern Optics, 34: 6–7, 709–759.
- A. I. Lvovsky (2015). “Squeezed light”. Photonics: Scientific Foundations, Technology and Applications, 1: 121–163.
- B. E. Saleh and M. C. Teich (2019). Fundamentals of Photonics. John Wiley & Sons.
- D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger (1997). “Experimental quantum teleportation”. Nature, 390: 6660, 575–579.
- M. B. Plenio and S. Virmani (2005). “An introduction to entanglement measures”. arXiv preprint quant-ph/0504163.
- M. Motaharifar, H. Kaatuzian, and M. Hasani (2023). “Possible teleportation of quantum states using squeezed sources and photonic integrated circuits”, in 2023 5th Iranian International Conference on Microelectronics (IICM), IEEE, 227–232.
- L. Albano, D. Mundarain, and J. Stephany (2002). “On the squeezed number states and their phase space representations”. Journal of Optics B: Quantum and Semiclassical Optics, 4: 5, 352.
- M. A. Nielsen and I. L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- M. Motaharifar and H. Kaatuzian (2023). “Mach-Zehnder interferometer cell for realization of quantum computer; a feasibility study”, in 2023 31st International Conference on Electrical Engineering (ICEE). IEEE, 762–767.
- D. Dai and J. E. Bowers (2011). “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler”. Optics Express, 19: 19, 18614–18620.
- J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers (2013). “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler”. Optics Letters, 38: 1, 4–6.
- T. C. Ralph (1999). “Continuous variable quantum cryptography”. Physical Review A, 61: 1, 010303.
- M. Hillery (2000). “Quantum cryptography with squeezed states”. Physical Review A, 61: 2, 022309.
- M. D. Reid (2000). “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations”. Physical Review A, 62: 6, 062308.
- N. J. Cerf, M. Levy, and G. Van Assche (2001). “Quantum distribution of Gaussian keys using squeezed states”. Physical Review A, 63: 5, 052311.
- D. Gottesman and J. Preskill (2003). Quantum Information with Continuous Variables. Springer Dordrecht.
- F. Grosshans and P. Grangier (2002). “Continuous variable quantum cryptography using coherent states”. Physical Review Letters, 88: 5, 057902.
- A. Leverrier and P. Grangier (2009). “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation”. Physical Review Letters, 102: 18, 180504.
- X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng (2009). “Continuous variable quantum key distribution based on optical entangled states without signal modulation”. Europhysics Letters, 87: 2, 20005.
- A. Denys, P. Brown, and A. Leverrier (2021). “Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation”. Quantum, 5: 540.
- L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen (2012). “Continuous variable quantum key distribution with modulated entangled states”. Nature Communications, 3: 1, 1083.
- V. C. Usenko and R. Filip (2011). “Squeezed-state quantum key distribution upon imperfect reconciliation”. New Journal of Physics, 13: 11, 113007.
- C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam (2004). “Quantum cryptography without switching”. Physical Review Letters, 93: 17, 170504.
- A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam (2005). “No-switching quantum key distribution using broadband modulated coherent light”. Physical Review Letters, 95: 18, 80503.
- R. García-Patrón and N. J. Cerf (2009). “Continuous-variable quantum key distribution protocols over noisy channels”. Physical Review Letters, 102: 13, 130501.
- J. Lodewyck et al. (2007). “Quantum key distribution over 25 km with an all-fiber continuous-variable system”. Physical Review A—Atomic, Molecular, and Optical Physics, 76: 4, 042305.
- F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier (2003). “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables”. arXiv preprint quant-ph/0306141
- G. Roberts et al. (2018). “Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution”. Optics Letters, 43: 20, 5110–5113.
- H.-K. Lo, M. Curty, and B. Qi (2012). “Measurement-device-independent quantum key distribution”. Physical Review Letters, 108: 13, 130503, doi: 10.1103/PhysRevLett.108.130503.
- Y. Ding et al. (2017). “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits”. npj Quantum Information, 3: 1, 25.
- C. Ma et al. (2016). “Silicon photonic transmitter for polarization-encoded quantum key distribution”. Optica, 3: 11, 1274–1278.
- P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson (2017). “Integrated silicon photonics for high-speed quantum key distribution”. Optica, 4: 2, 172–177.
- F. Najafi et al. (2015). “On-chip detection of non-classical light by scalable integration of single-photon detectors”. Nature Communications, 6: 1, 5873.
- W. H. Pernice et al. (2012). “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits”. Nature Communications, 3: 1, 1325.
- M. Ziebell et al. (2015). “Towards on-chip continuous-variable quantum key distribution”, in The European Conference on Lasers and Electro-Optics. Optica Publishing Group.
- P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti (2013). “Experimental demonstration of long-distance continuous-variable quantum key distribution”. Nature Photonics, 7: 5, 378–381.
- D. Huang, P. Huang, D. Lin, and G. Zeng (2016). “Long-distance continuous-variable quantum key distribution by controlling excess noise”. Scientific Reports, 6: 1, 19201.
- F. Raffaelli et al. (2018). “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers”. Quantum Science and Technology, 3: 2, 025003.
- M. Rudé et al. (2018). “Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources”. Optics Express, 26: 24, 31957–31964.
- F. Raffaelli, P. Sibson, J. E. Kennard, D. H. Mahler, M. G. Thompson, and J. C. Matthews (2018). “Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip”. Optics Express, 26: 16, 19730–19741.
- C. Abellan et al. (2016). “Quantum entropy source on an InP photonic integrated circuit for random number generation”. Optica, 3: 9, 989–994.
- P. Kaur, A. Boes, G. Ren, T. G. Nguyen, G. Roelkens, and A. Mitchell, (2021). “Hybrid and heterogeneous photonic integration”. APL Photonics, 6, 6.
- K. Jaksch et al. (2024). “Composable free-space continuous-variable quantum key distribution using discrete modulation”. arXiv preprint arXiv:2410.12915.
- Y. Xu et al. (2021). “Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements”. Scientific Reports, 11: 1, 16426.
- C. Koos et al. (2013). “Photonic wire bonding: An enabling technology for heterogeneous multi-chip integration”, in Integrated Photonics Research, Silicon and Nanophotonics. Optica Publishing Group.
- M. Hasani, H. Kaatuzian, and M. Motaharifar, (2023). “Stochastic mass-spring model for the generation of squeezed state of light”, in Laser Science. Optica Publishing Group.
- S. Zhao et al. (2024). “Broadband amplitude squeezing at room temperature in electrically driven quantum dot lasers”. Physical Review Research, 6: 3, L032021.
- M. Hasani and M. Motaharifar, (2024). “Experimental realization of spontaneous parametric down conversion”.
- M. Rabiei, H. Kaatuzian, M. Hasani, and A. Shircharandabi, (2024). “Analysis of squeezed light generation via SFWM in a Si3N4microring resonator”, in Frontiers in Optics. Optica Publishing Group.
- A. Shircharandabi, H. Kaatuzian, M. Hasani, and M. Rabiei, (2024). “Investigation of squeezed-state generation using SFWM in a SiO2 microring resonator”, in Laser Science. Optica Publishing Group.
- E. Engin et al. (2013). “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement”. Optics Express, 21: 23, 27826–27834.
- J. M. Arrazola et al. (2021). “Quantum circuits with many photons on a programmable nanophotonic chip”. Nature, 591: 7848, 54–60.
- M. A. Broome et al. (2013). “Photonic boson sampling in a tunable circuit”. Science, 339: 6121, 794–798.
- A. Molina and J. Watrous, (2019). “Revisiting the simulation of quantum Turing machines by quantum circuits”. Proceedings of the Royal Society A, 475: 2226, 20180767.
- R. Nagai, T. Tomono, and Y. Minato, (2021). “Simulation of Continuous-Variable Quantum Systems with Tensor Network”. in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 437–438.
- Q. Zhang, H. Lai, J. Pieprzyk, and L. Pan, (2022). “An improved quantum network communication model based on compressed tensor network states”. Quantum Information Processing, 21: 7, 253.
- Q. Zhang, H. Lai, and J. Pieprzyk, (2022). “Quantum-key-expansion protocol based on number-stateentanglement-preserving tensor network with compression”. Physical Review A, 105: 3, 032439.
- A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, (2013). “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks”. Physical Review Letters, 111: 13, 130501, doi: 10.1103/PhysRevLett.111.130501.
- T. Li, Z. Gao, and Z. Li, (2020). “Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator”. Europhysics Letters, 131: 6, 60001.
- Y. Cao et al. (2020). “Long-distance free-space measurement-device-independent quantum key distribution”. Physical Review Letters, 125: 26, 260503.
- Y.-H. Li et al. (2023). “Free-space and fiber-integrated measurement-device-independent quantum key distribution under high background noise”. Physical Review Letters, 131: 10, 100802.
- L. Cao et al. (2020). “Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems”. Physical Review Applied, 14: 1, 011001.
- Q. Liao, Y. Wang, D. Huang, and Y. Guo, (2018). “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution”. Optics Express, 26: 16, 19907–19920.
- P. Wang, Y. Tian, and Y. Li, (2025). “Advances in continuous variable measurement-device-independent quantum key distribution”. arXiv preprint arXiv:2502.16448.
- Y.-C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, and H. Guo, (2014). “Continuous-variable measurementdevice-independent quantum key distribution using squeezed states”. Physical Review A,. 90: 5, 052325, doi: 10.1103/PhysRevA.90.052325.
- L. Fan, Y. Bian, Y. Zhang, and S. Yu, (2022). “Free-space continuous-variable quantum key distribution with imperfect detector against uniform fast-fading channels”. Symmetry, 14: 6, 1271. https://www.mdpi.com/2073-8994/14/6/1271.
- L. Ruppert et al. (2019). “Fading channel estimation for free-space continuous-variable secure quantum communication”. New Journal of Physics, 21: 12, 123036.
- R. Zhao, J. Zhou, R. Shi, and J. Shi, (2024). “Unidimensional continuous variable quantum key distribution under fast fading channel”. Annalen der Physik, 536: 5, 2300401.
- F. Yang, D. Qiu, and P. Mateus, (2023). “Continuous-variable quantum secret sharing in fast-fluctuating channels”. IEEE Transactions on Quantum Engineering, 4: 1–9.
- P. Papanastasiou, C. Weedbrook, and S. Pirandola, (2018). “Continuous-variable quantum key distribution in uniform fast-fading channels”. Physical Review A, 97: 3, 032311, doi: 10.1103/PhysRevA.97.032311.
- S. Pirandola et al. (2015). “MDI-QKD: Continuous-versus discrete-variables at metropolitan distances”. arXiv preprint arXiv:1506.06748.
- P. Wang, X. Wang, and Y. Li, (2019). “Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers”. Physical Review A, 99: 4, 042309, doi: 10.1103/PhysRevA.99.042309.
- E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, (2016). “Practical challenges in quantum key distribution”. npj Quantum Information, 2: 1, 1–12.
- C. M. Knaut et al. (2024). “Entanglement of nanophotonic quantum memory nodes in a telecom network”. Nature, 629: 8012, 573–578.
- É. Dumur et al. (2021). “Quantum communication with itinerant surface acoustic wave phonons”. npj Quantum Information, 7: 1, 173.
- R. Yanagimoto, P. L. McMahon, E. Ng, T. Onodera, and H. Mabuchi, (2019). “Embedding entanglement generation within a measurement-feedback coherent Ising machine”. arXiv preprint arXiv:1906.04902.
- Y. Inui and Y. Yamamoto, (2020). “Entanglement and quantum discord in optically coupled coherent Ising machines”. Physical Review A, 102: 6, 062419.