Have a personal or library account? Click to login
Polynomial Complexity of Quantum Sample Tomography Cover

Polynomial Complexity of Quantum Sample Tomography

By: Kun Tang and  Jun Lai  
Open Access
|May 2025

References

  1. F. Arute, K. Arya, R. Babbush, et al. (2019). “Quantum supremacy using a programmable superconducting processor”. Nature, 574, 505–510.
  2. A.W. Harrow, A. Hassidim, and S. Lloyd (2009). “Quantum algorithm for solving linear systems of equations.” Physical Review Letters, 103, 150502.
  3. L. Zhou, S.-T. Wang, S. Choi, et al. (2020). “Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices.” Physical Review X, 10, 021067.
  4. A.W.R. Smith, J. Gray, and M.S. Kim (2021). “Efficient quantum state sample tomography with basis-dependent neural networks.” PRX Quantum, 2, 020348.
  5. J. Shang, Z. Zhang, and H.K. Ng (2017). “Superfast maximum-likelihood reconstruction for quantum tomography.” Physical Review A, 95, 062336
  6. E. Bolduc, G.C. Knee, E.M. Gauger, et al. (2017). “Projected gradient descent algorithms for quantum state tomography.” npj Quantum Information, 3, 44.
  7. D. Gross, Y.-K. Liu, S.T. Flammia, et al. (2010). “Quantum state tomography via compressed sensing.” Physical Review Letters, 105, 150401.
  8. Z. Qin, C. Jameson, Z. Gong, et al. (2024). “Quantum state tomography for matrix product density operators.” IEEE Transactions on Information Theory, 70, 5030.
  9. J. van Apeldoorn, A. Cornelissen, A. Gilyén, et al. (2023). “Quantum tomography using state-preparation unitaries”, in Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1265–1318.
  10. G. Torlai, G. Mazzola, J. Carrasquilla, et al. (2018). “Neural-network quantum state tomography”. Nature Physics, 14, 447–450.
  11. S. Ahmed, C. Sánchez Muñoz, F. Nori, and A.F. Kockum (2021). “Classification and reconstruction of optical quantum states with deep neural networks”. Physical Review Research, 3, 033278.
  12. V. Wei, W.A. Coish, P. Ronagh, et al. (2024). “Neural-shadow quantum state tomography”. Physical Review Research, 6, 023250.
  13. Y. Quek, S. Fort, and H.K. Ng (2021). “Adaptive quantum state tomography with neural networks”. npj Quantum Information., 7, 1–7.
  14. N. Innan, O. I. Siddiqui, S. Arora, et al. (2024). “Quantum state tomography using quantum machine learning”. Quantum Machine Intelligence, 6, 28.
  15. S. Aaronson (2007). “The learnability of quantum states”. Proceedings of the Royal Society A, 463, 3089–3114.
  16. H.-Y. Hu, S. Choi, and Y.-Z. You (2023). “Classical shadow tomography with locally scrambled quantum dynamics”. Physical Review Research, 5, 023027.
  17. H.-Y. Huang (2022). “Learning quantum states from their classical shadows”. Nature Review Physics, 4, 81.
  18. P.L. Bartlett, O. Bousquet, and S. Mendelson (2005). “Local Rademacher complexities”. Annals of Statistics, 33.
  19. A. Kitaev, A. Shen, and M. Vyalyi (2002). Classical and Quantum Computation. American Mathematical Society.
  20. J. Cotler and F. Wilczek (2020). “Quantum overlapping tomography”. Physical Review Letters, 124, 100401.
  21. S. Aaronson (2020). “Shadow tomography of quantum states”. SIAM Journal on Computing, 49, STOC18-368- STOC18-394.
  22. A. Maurer (2016). “A vector-contraction inequality for rademacher complexities”, in R. Ortner, H.U. Simon, and S. Zilles (eds), Algorithmic Learning Theory. Cham: Springer International Publishing, 3–17.
  23. C. Cortes, M. Kloft, and M. Mohri (2013). “Learning kernels using local Rademacher complexity”. Advances in Neural Information Processing Systems (NIPS), 26, 2760–2768.
  24. S. Dasgupta and A. Gupta (2003). “An elementary proof of a theorem of Johnson and Lindenstrauss”. Random Structures & Algorithms, 22, 60.
  25. P. Cha, P. Ginsparg, F. Wu, J. Carrasquilla, et al. (2022). “Attention-based quantum tomography”. Machine Learning: Science and Technology, 3, 01LT01
  26. J.R. Johansson, P.D. Nation, and F. Nori (2012). “QuTiP: An open-source python framework for the dynamics of open quantum systems”. Computer Physics Communications, 183, 1760–1772.
  27. J.R. Johansson, P.D. Nation, and F. Nori (2013). “QuTiP 2: A python framework for the dynamics of open quantum systems”. Computer Physics Communications, 184, 1234–1240.
  28. B.I. Bantysh, A.Y. Chernyavskiy, and Y.I. Bogdanov (2021). “Quantum tomography benchmarking”. Quantum Information Processing, 20, 339.
  29. J. Carrasquilla, G. Torlai, R.G. Melko, et al. (2019). “Reconstructing quantum states with generative models”. Nature Machine Intelligence, 1, 155–161.
DOI: https://doi.org/10.2478/qic-2025-0008 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 156 - 174
Published on: May 26, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Kun Tang, Jun Lai, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.