Have a personal or library account? Click to login
An Efficient Quantum Algorithm for the Traveling Salesman Problem Cover

An Efficient Quantum Algorithm for the Traveling Salesman Problem

Open Access
|Feb 2025

References

  1. M. A. Nielsen and I. L. Chuang (2002). Quantum Computation and Quantum Information, Cambridge University Press.
  2. G. Dantzig, R. Fulkerson and S. Johnson (1954). “Solution of a large-scale traveling-salesman problem”. Operations Research, 2, 393.
  3. M. Grötschel and O. Holland (1991). “Solution of large-scale symmetric travelling salesman problems”. Mathematical Programming, 51, 141.
  4. M. Padberg and G. Rinaldi (1991). “A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems”. SIAM Review, 33, 60.
  5. D. Applegate, R. Bixby, V. Chvátal and W. Cook (1998). “On the solution of traveling salesman problems”. Documenta Mathematica, 3, 645.
  6. J. D. C. Little, K. G. Murty, D. W. Sweeney and C. Karel (1963). “An algorithm for the traveling salesman problem”. Operations Research, 11, 972.
  7. M. Held and R. M. Karp (1971). “The traveling-salesman problem and minimum spanning trees: Part II”. Mathematical Programming, 1, 6.
  8. D. Applegate, R. Bixby, V. Chvátal and W. Cook (2003). “Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems”. Mathematical Programming, 97, 91.
  9. V. Černý (1985). “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm”. Journal of Optimization Theory and Applications, 45, 41.
  10. H. He (2024). “Quantum annealing and GNN for solving TSP with QUBO”, in S. Ghosh and Z. Zhang (eds), Algorithmic Aspects in Information and Management (AAIM) 2024, Lecture Notes in Computer Science, 15180, Singapore: Springer.
  11. R. Martoňák, G. E. Santoro and E. Tosatti (2004). “Quantum annealing of the traveling-salesman problem”. Physical Review E, 70, 057701.
  12. E. Rodriguez, E. Osaba and I. Oregi (2022). “Analyzing the behaviour of D-Wave quantum annealer: fine-tuning parameterization and tests with restrictive Hamiltonian formulations”, in 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 938–946.
  13. W. Qian, R. A. M. Basili, M. M. Eshaghian-Wilner, A. Khokhar, G. Luecke and J. P. Vary (2023) “Comparative study of variations in quantum approximate optimization algorithms for the traveling salesman problem”. Entropy, 25, 1238.
  14. A. Matsuo, Y. Suzuki, I. Hamamura and S. Yamashita (2023). “Enhancing VQE convergence for optimization problems with problem-specific parameterized quantum circuits”. IEICE Transactions on Information and Systems, E106.D, 1772.
  15. J. Bang, J. Ryu, C. Lee, S. Yoo, J. Lim and J. Lee (2013). “A quantum heuristic algorithm for the traveling salesman problem.” Journal of the Korean Physical Society, 61, 1944.
  16. K. Srinivasan, S. Satyajit, B. K. Behera and P. K. Panigrahi (2018). “Efficient quantum algorithm for solving travelling salesman problem: An IBM quantum experience.” arXiv:1805.10928.
  17. A. Moylett, N. Linden and A. Montanaro (2017). “Quantum speedup of the traveling-salesman problem for boundeddegree graphs.” Physical Review A, 95, 032323.
  18. C. Tszyunsi and I. I. Beterov (2023). “A quantum algorithm for solving the travelling salesman problem by quantum phase estimation and quantum search”. Journal of Experimental and Theoretical Physics, 137, 210.
  19. A. W. Harrow, A. Hassidim and S. Lloyd (2009). “Quantum algorithm for linear systems of equations”. Physical Review Letters, 103, 150502.
  20. D. W. Berry, G. Ahokas, R. Cleve and B. C. Sanders (2006). “Efficient quantum algorithms for simulating sparse Hamiltonians”. Communications in Mathematical Physics, 270, 359.
  21. S. Lloyd, M. Mohseni and P. Rebentrost (2014). “Quantum principal component analysis”. Nature Physics, 10: 631, 79
  22. M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O’Keeffe, et al. (2022). “Demonstration of density matrix exponentiation using a superconducting quantum processor”. Physical Review X, 12, 011005.
  23. TSP-Data. Tests of Our Empirical Method for TSP. Available at: https://shorturl.at/npLN7 (Accessed on 5 February 2025).
  24. S. Kimmel, C. Y.-Y. Lin, G. H. Low, M. Ozols and T. J. Yoder (2017). “Hamiltonian simulation with optimal sample complexity”. npj Quantum Information, 3, 13.
DOI: https://doi.org/10.2478/qic-2025-0004 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 71 - 81
Submitted on: Nov 17, 2024
Accepted on: Feb 10, 2025
Published on: Feb 22, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Anant Sharma, Nupur Deshpande, Sanchita Ghosh, Sreetama Das, Shibdas Roy, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.