Abstract
A proof of quantumness is a protocol through which a classical machine can test whether a purportedly quantum device, with comparable time and memory resources, is performing a computation that is impossible for classical computers. Existing approaches to provide proofs of quantumness depend on unproven assumptions about some task being impossible for machines of a particular model under certain resource restrictions. We study a setup where both devices have space bounds o(log log n). Under such memory budgets, it has been unconditionally proven that probabilistic Turing machines are unable to solve certain computational problems. We formulate a new class of problems and show that these problems are polynomial-time solvable for quantum machines, impossible for classical machines, and have the property that their solutions can be “proved” by a small-space quantum machine to a classical machine with the same space bound. These problems form the basis of our newly defined protocol, where the polynomial-time verifier's verdict about the tested machine's quantumness is not conditional on an unproven weakness assumption.