References
- A.J. Leggett (1980). “Macroscopic quantum systems and the quantum theory of measurement”. Progress of Theoretical Physics Supplement, 69: 80.
https://doi.org/10.1143/PTP.69.80 . - L. Mandel and E. Wolf (1995). Optical Coherence and Quantum Optics, Cambridge: Cambridge University Press.
- M. Hillery (2016). “Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation”. Physical Review A, 93: 012111.
https://doi.org/10.1103/PhysRevA.93.012111 . - J.M. Matera, D. Egloff, N. Killoran and M.B. Plenio (2016). “Coherent control of quantum systems as a resource theory”. Quantum Science and Technology 1: 01LT01.
https://doi.org/10.1088/2058-9565/1/1/01LT01 . - M. Pan and D. Qiu (2019). “Operator coherence dynamics in Grover’s quantum search algorithm”. Physical Review A, 100: 012349.
https://doi.org/10.1103/PhysRevA.100.012349 - W. Wang, et al. (2019). “Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit”. Physical Review Letters, 123: 220501.
https://doi.org/10.1103/PhysRevLett.123.220501 . - F. Ahnefeld, T. Theurer, D. Egloff, J. M. Matera and M. B. Plenio (2022). “Coherence as a resource for Shor’s algorithm”. Physical Review Letters 129: 120501.
https://doi.org/10.1103/PhysRevLett.129.120501 . - M. Karimi, A. Javadi-Abhari, C. Simon and R. Ghobadi (2023). “The power of one clean qubit in supervised machine learning”. Scientific Reports, 13: 19975.
https://doi.org/10.1038/s41598-023-46497-y . - L. Ye, Z. Wu and S. Fei (2023). “Tsallis relative α entropy of coherence dynamics in Grover’s search algorithm”. Communications in Theoretical Physics. 75: 085101.
https://doi.org/10.1088/1572-9494/acdce5 . - J. Berberich, D. Fink and C. Holm, “Robustness of quantum algorithms against coherent control errors”. arXiv 2023, arXiv:2303.00618.
- L. Escalera-Moreno, “QBithm: Towards the coherent control of robust spin qubits in quantum algorithms”. arXiv 2023, arXiv:2303.12655.
- V. Giovannetti, S. Lloyd and L. Maccone (2004). “Quantum-enhanced measurements: Beating the standard quantum limit”. Science, 306: 1330.
https://doi.org/10.1126/science.1104149 . - V. Giovannetti, S. Lloyd and L. Maccone (2011). “Advances in quantum metrology”. Nature Photonics, 5: 222.
https://doi.org/10.1038/nphoton.2011.35 . - R. Demkowicz-Dobrzanski and L. Maccone (2014). “Using entanglement against noise in quantum metrology”. Physical Review Letters, 113: 250801.
https://doi.org/10.1103/PhysRevLett.113.250801 . - D.P. Pires, I.A. Silva, E.R. deAzevedo, D.O. Soares-Pinto, J.G. Filgueiras (2018). “Coherence orders, decoherence, and quantum metrology”. Physical Review A, 98: 032101.
https://doi.org/10.1103/PhysRevA.98.032101 . - W. Cheng, S.C. Hou, Z. Wang and X.X. Yi (2019). “Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup”. Physical Review A, 100: 053825.
https://doi.org/10.1103/PhysRevA.100.053825 . - C. Zhang, T.R. Bromley, Y.F. Huang, H. Cao, W.M. Lv, B.H. Liu, C.F. Li, G.C. Guo, M. Cianciaruso and G. Adesso (2019). “Demonstrating quantum coherence and metrology that is resilient to transversal noise”. Physical Review Letters 123: 180504.
https://doi.org/10.1103/PhysRevLett.123.180504 . - A. Castellini, R. LoFranco, L. Lami, A. Winter, G. Adesso and G. Compagno (2019). “Indistinguishability-enabled coherence for quantum metrology”. Physical Review A 100: 012308.
https://doi.org/10.1103/PhysRevA.100.012308 . - L. Ares and A. Luis (2021). “Signal estimation and coherence”. Optics Letters 46: 5409.
https://doi.org/10.1364/OL.439197 - R. Lecamwasam, S. Assad, J. Hope, P. Lam, J. Thompson and M. Gu (2024). “Relative entropy of coherence quantifies performance in Bayesian metrology”. arXiv 2024, arXiv:2401.16020.
- D. Girolami, T. Tufarelli and G. Adesso (2013). “Characterizing nonclassical correlations via local quantum uncertainty”. Physical Review Letters 110: 240402.
https://doi.org/10.1103/PhysRevLett.110.240402 . - A. Farace, A. De Pasquale, L. Rigovacca and V. Giovannetti (2014). “Discriminating strength: A bona fide measure of non-classical correlations”. New Journal of Physics, 16: 7, 073010
https://doi.org/10.1088/1367-2630/16/7/073010 . - A. Streltsov, G. Adesso and M. B. Plenio (2017). “Colloquium: Quantum coherence as a resource”. Reviews of Modern Physics, 89: 041003.
https://doi.org/10.1103/RevModPhys.89.041003 . - R. Takagi, B. Regula, K. Bu, Z.W. Liu and G. Adesso (2019). “Operational advantage of quantum resources in subchannel discrimination”. Physical Review Letters 122: 140402.
https://doi.org/10.1103/PhysRevLett.122.140402 . - M. Wilde (2020, June). “Coherent quantum channel discrimination”, in Proceedings of the 2020 IEEE International Symposium on Information Theory, pp. 1921–1926.
https://doi.org/10.1109/ISIT44484.2020.9174425 . - Z.M. Rossi, J. Yu, I.L. Chuang and S. Sugiura (2022). “Quantum advantage for noisy channel discrimination”. Physical Review A, 105: 032401.
https://doi.org/10.1103/PhysRevA.105.032401 . - S. Chen, S. Zhou, A. Seif and L. Jiang (2022). “Quantum advantages for Pauli channel estimation”. Physical Review A, 105: 032435.
https://doi.org/10.1103/PhysRevA.105.032435 . - J. Ma, B. Yadin, D. Girolami, V. Vedral and M. Gu (2016). “Converting coherence to quantum correlations”. Physical Review Letters, 116: 160407.
https://doi.org/10.1103/PhysRevLett.116.160407 . - X. Hu and H. Fan (2016). “Extracting quantum coherence via steering”. Scientific Reports 6: 34380.
https://doi.org/10.1038/srep34380 . - Hu, X., A. Milne, B. Zhang and H. Fan (2016). “Quantum coherence of steered states.” Scientific Reports, 6: 19365.
https://doi.org/10.1038/srep19365 . - D. Mondal, T. Pramanik and A. K. Pati (2017). “Nonlocal advantage of quantum coherence”. Physical Review A, 95: 010301(R).
https://doi.org/10.1103/PhysRevA.95.010301 . - D. Girolami and B. Yadin (2017). “Witnessing multipartite entanglement by detecting asymmetry”. Entropy, 19: 124.
https://doi.org/10.3390/e19030124 . - Z. Y. Ding, H. Yang, H. Yuan, D. Wang, J. Yang and L. Ye (2019). “Experimental investigation of the nonlocal advantage of quantum coherence”. Physical Review A, 100: 022308.
https://doi.org/10.1103/PhysRevA.100.022308 . - K. Lee, J. Lin, K. Lemr, A. Cernoch, A. Miranowicz, F. Nori, H. Ku and Y. Chen (2023). “Coherence distillation unveils Einstein-Podolsky-Rosen steering”. arXiv 2023, arXiv:2312.01055.
- G. Karpat, B. Cakmak and F. F. Fanchini (2014). “Quantum coherence and uncertainty in the anisotropic XY chain”. Physical Review B, 90: 104431.
https://doi.org/10.1103/PhysRevB.90.104431 . - B. Cakmak, G. Karpat and F. Fanchini (2015). “Factorization and criticality in the anisotropic XY chain via correlations”. Entropy, 17: 790.
https://doi.org/10.3390/e17020790 . - A.L. Malvezzi, G. Karpat, B. Cakmak, F.F. Fanchini, T. Debarba and R. O. Vianna (2016). “Quantum correlations and coherence in spin-1 Heisenberg chains”. Physical Review B, 93: 184428.
https://doi.org/10.1103/PhysRevB.93.184428 . - J. J. Chen, J. Cui, Y. R. Zhang and H. Fan (2016). “Coherence susceptibility as a probe of quantum phase transitions”. Physical Review A, 94: 022112.
https://doi.org/10.1103/PhysRevA.94.022112 . - Y. Li, H. Lin (2016). “Quantum coherence and quantum phase transitions”. Scientific Reports, 6: 26365.
https://doi.org/10.1038/srep26365 . - Z. D. Shi, H. Goldman, Z. Dong and T. Senthil (2024). “Excitonic quantum criticality: From bilayer graphene to narrow Chern bands”. arXiv 2024, arXiv:2402.12436.
- T. Baumgratz, M. Cramer and M. B. Plenio (2014). “Quantifying coherence”. Physical Review Letters, 113: 140401.
https://doi.org/10.1103/PhysRevLett.113.140401 - E. Chitambar and G. Gour (2019). “Quantum resource theories”. Reviews of Modern Physics, 91: 025001.
https://doi.org/10.1103/RevModPhys.91.025001 . - J. Aberg (2006). “Quantifying superposition”. arXiv 2006, arXiv:quant-ph/0612146.
- A. Winter and D. Yang (2016). “Operational resource theory of coherence”. Physical Review Letters, 116: 120404.
https://doi.org/10.1103/PhysRevLett.116.120404 . - B. Yadin, J. Ma, D. Girolami, M. Gu and V. Vedral (2016). “Quantum processes which do not use coherence”. Physical Review X, 6: 041028.
https://doi.org/10.1103/PhysRevX.6.041028 . - E. Chitambar and G. Gour (2016) “Comparison of incoherent operations and measures of coherence”. Physical Review A, 94: 052336.
https://doi.org/10.1103/PhysRevA.94.052336 . - E. Chitambar and G. Gour (2016). “Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence”. Physical Review Letters, 117: 030401.
https://doi.org/10.1103/PhysRevLett.117.030401 . - I. Marvian and R. W. Spekkens (2016). “How to quantify coherence: Distinguishing speakable and unspeakable notions”. Physical Review A, 94: 052324.
https://doi.org/10.1103/PhysRevA.94.052324 . - J. Vicente and A. Streltsov (2017). “Genuine quantum coherence”. Journal of Physics A, 50: 045301.
https://doi.org/10.1088/1751-8121/50/4/045301 . - R. Takagi and B. Regula (2019). “General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks”. Physical Review X 9: 031053.
https://doi.org/10.1103/PhysRevX.9.031053 . - S. Du, Z. Bai and Y. Guo (2015). “Conditions for coherence transformations under incoherent operations”. Physical Review A, 91: 052120.
https://doi.org/10.1103/PhysRevA.91.052120 . - A. Streltsov, S. Rana, P. Boes and J. Eisert (2017). “Structure of the resource theory of quantum coherence”. Physical Review Letters, 119: 140402.
https://doi.org/10.1103/PhysRevLett.119.140402 . - Q. Zhao, Y. Liu, X. Yuan, E. Chitambar and X. Ma (2018). “One-shot coherence dilution”. Physical Review Letters, 120: 070403.
https://doi.org/10.1103/PhysRevLett.120.070403 . - G. Torun and A. Yildiz (2018). “Deterministic transformations of coherent states under incoherent operations”. Physical Review A, 97: 052331.
https://doi.org/10.1103/PhysRevA.97.052331 - G. Torun, L. Lami, G. Adesso and A. Yildiz (2019). “Optimal distillation of quantum coherence with reduced waste of resources”. Physical Review A, 99: 012321.
https://doi.org/10.1103/PhysRevA.99.012321 - L. Lami, B. Regula, G. Adesso (2019). “Generic bound coherence under strictly incoherent operations”. Physical Review Letters, 122: 150402.
https://doi.org/10.1103/PhysRevLett.122.150402 - S. Du, Z. Bai and X. Qi (2019). “Coherence manipulation under incoherent operations”. Physical Review A, 100: 032313.
https://doi.org/10.1103/PhysRevA.100.032313 - C.L. Liu and D.L. Zhou (2019). “Deterministic coherence distillation”. Physical Review Letters, 123: 070402.
https://doi.org/10.1103/PhysRevLett.123.070402 - K. Wu et al. (2020). “Quantum coherence and state conversion: Theory and experiment”. npj Quant. Info., 6: 22.
https://doi.org/10.1038/s41534-020-0250-z - K. Fang and Z. W. Liu (2020). “No-go theorems for quantum resource purification”. Physical Review Letters, 125: 060405.
https://doi.org/10.1103/PhysRevLett.125.060405 - G. Torun, H. Senyasa and A. Yildiz. (2021). “Resource theory of superposition: State transformations”. Physical Review A, 103: 032416.
https://doi.org/10.1103/PhysRevA.103.032416 - L. Zhang, T. Gao and F. Yan (2021). “Transformations of multilevel coherent states under coherence-preserving operations”. Science China Physics, Mechanics & Astronomy, 64: 260312.
https://doi.org/10.1007/s11433-021-1696-y - G. Torun, O. Pusuluk and O. Mustecaplioglu. (2023). “A compendious review of majorization-based resource theories: Quantum information and quantum thermodynamics”. Turkish Journal of Physics, 47: 141.
https://doi.org/10.55730/1300-0101.2744 - Y. Yao, G. H. Dong, X. Xiao, M. Li and C. P. Sun (2017). “Interpreting quantum coherence through a quantum measurement process”. Physical Review, 96: 052322.
https://doi.org/10.1103/PhysRevA.96.052322 - K. Tan, S. Choi and H. Jeong (2019). “Optimizing nontrivial quantum observables using coherence”. New Journal of Physics, 21: 023013.
https://doi.org/10.1088/1367-2630/ab0430 . - C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston and G. Adesso (2016). “Robustness of coherence: An operational and observable measure of quantum coherence”. Physical Review Letters, 116: 150502.
https://doi.org/10.1103/PhysRevLett.116.150502 . - Y. Yao, D. Li and C. P. Sun (2019). “Quantum coherence fraction”. Physical Review A, 100: 032324.
https://doi.org/10.1103/PhysRevA.100.032324 - D. Sauerwein, N. R. Wallach, G. Gour and B. Kraus (2018). “Transformations among pure multipartite entangled states via local operations are almost never possible”. Physical Review X, 8: 031020.
https://doi.org/10.1103/PhysRevX.8.031020 . - S. Du and Z. Bai (2022). “Conversion of Gaussian states under incoherent Gaussian operations”. Physical Review A, 105: 022412.
https://doi.org/10.1103/PhysRevA.105.022412 . - O. Kruger and R. F. Werner (2005). “Some open problems in quantum information theory”. arXiv 2005, arXiv:quant-ph/0504166.
- Available at:
https://oqp.iqoqi.oeaw.ac.at/ (Accessed on 22 June 2024). - J. Vicente (2024). “Maximally entangled mixed states for a fixed spectrum do not always exist”. Physical Review Letters, 133: 050202.
https://doi.org/10.1103/PhysRevLett.133.050202 . - J. Xu (2024). “Coherence and imaginarity of quantum states”. arXiv 2024, arXiv:2404.06210.
- H. Zhao and C. Yu (2018). “Coherence measure in terms of the Tsallis relative α entropy”. Scientific Reports, 8: 299.
https://doi.org/10.1038/s41598-017-18692-1 - A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera and G. Adesso (2015). “Measuring quantum coherence with entanglement”. Physical Review Letters, 115: 020403.
https://doi.org/10.1103/PhysRevLett.115.020403 - K. Bu, N. Anand and U. Singh (2018). “Asymmetry and coherence weight of quantum states”. Physical Review A, 97: 032342.
https://doi.org/10.1103/PhysRevA.97.032342 - S. Du, Z. Bai and X. Qi (2015). “Coherence measures and optimal conversion for coherent states”. Quantum Information & Computation, 15: 1307.
https://doi.org/10.26421/QIC15.15-16-3 - C. Datta, R. Ganardi, T. V. Kondra and A. Streltsov (2023). “Is there a finite complete set of monotones in any quantum resource theory?” Physical Review Letters, 130: 240204.
https://doi.org/10.1103/PhysRevLett.130.240204 - C. Li and H. Woerdeman (1997). “Special classes of positive and completely positive maps”. Linear Algebra and its Applications, 255: 247.
https://doi.org/10.1016/S0024-3795(96)00776-8 - V. Paulsen (2003). Completely Bounded Maps and Operator Algebras, Cambridge: Cambridge University Press.
- J. Watrous (2018). Theory of Quantum Information, Cambridge: Cambridge University Press.
- M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston and G. Adesso (2016). “Robustness of asymmetry and coherence of quantum states”. Physical Review A, 93: 042107.
https://doi.org/10.1103/PhysRevA.93.042107 . - M. Sion (1958). “On general minimax theorems”. Pacific Journal of Mathematics, 8: 171.
- R. A. Horn and C. R. Johnson (1991). Topics in Matrix Analysis, Cambridge: Cambridge University Press.