Have a personal or library account? Click to login
State Convertibility under Genuinely Incoherent Operations Cover

State Convertibility under Genuinely Incoherent Operations

By: Shuanping Du and  Zhaofang Bai  
Open Access
|Oct 2024

References

  1. A.J. Leggett (1980). “Macroscopic quantum systems and the quantum theory of measurement”. Progress of Theoretical Physics Supplement, 69: 80. https://doi.org/10.1143/PTP.69.80.
  2. L. Mandel and E. Wolf (1995). Optical Coherence and Quantum Optics, Cambridge: Cambridge University Press.
  3. M. Hillery (2016). “Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation”. Physical Review A, 93: 012111. https://doi.org/10.1103/PhysRevA.93.012111.
  4. J.M. Matera, D. Egloff, N. Killoran and M.B. Plenio (2016). “Coherent control of quantum systems as a resource theory”. Quantum Science and Technology 1: 01LT01. https://doi.org/10.1088/2058-9565/1/1/01LT01.
  5. M. Pan and D. Qiu (2019). “Operator coherence dynamics in Grover’s quantum search algorithm”. Physical Review A, 100: 012349. https://doi.org/10.1103/PhysRevA.100.012349
  6. W. Wang, et al. (2019). “Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit”. Physical Review Letters, 123: 220501. https://doi.org/10.1103/PhysRevLett.123.220501.
  7. F. Ahnefeld, T. Theurer, D. Egloff, J. M. Matera and M. B. Plenio (2022). “Coherence as a resource for Shor’s algorithm”. Physical Review Letters 129: 120501. https://doi.org/10.1103/PhysRevLett.129.120501.
  8. M. Karimi, A. Javadi-Abhari, C. Simon and R. Ghobadi (2023). “The power of one clean qubit in supervised machine learning”. Scientific Reports, 13: 19975. https://doi.org/10.1038/s41598-023-46497-y.
  9. L. Ye, Z. Wu and S. Fei (2023). “Tsallis relative α entropy of coherence dynamics in Grover’s search algorithm”. Communications in Theoretical Physics. 75: 085101. https://doi.org/10.1088/1572-9494/acdce5.
  10. J. Berberich, D. Fink and C. Holm, “Robustness of quantum algorithms against coherent control errors”. arXiv 2023, arXiv:2303.00618.
  11. L. Escalera-Moreno, “QBithm: Towards the coherent control of robust spin qubits in quantum algorithms”. arXiv 2023, arXiv:2303.12655.
  12. V. Giovannetti, S. Lloyd and L. Maccone (2004). “Quantum-enhanced measurements: Beating the standard quantum limit”. Science, 306: 1330. https://doi.org/10.1126/science.1104149.
  13. V. Giovannetti, S. Lloyd and L. Maccone (2011). “Advances in quantum metrology”. Nature Photonics, 5: 222. https://doi.org/10.1038/nphoton.2011.35.
  14. R. Demkowicz-Dobrzanski and L. Maccone (2014). “Using entanglement against noise in quantum metrology”. Physical Review Letters, 113: 250801. https://doi.org/10.1103/PhysRevLett.113.250801.
  15. D.P. Pires, I.A. Silva, E.R. deAzevedo, D.O. Soares-Pinto, J.G. Filgueiras (2018). “Coherence orders, decoherence, and quantum metrology”. Physical Review A, 98: 032101. https://doi.org/10.1103/PhysRevA.98.032101.
  16. W. Cheng, S.C. Hou, Z. Wang and X.X. Yi (2019). “Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup”. Physical Review A, 100: 053825. https://doi.org/10.1103/PhysRevA.100.053825.
  17. C. Zhang, T.R. Bromley, Y.F. Huang, H. Cao, W.M. Lv, B.H. Liu, C.F. Li, G.C. Guo, M. Cianciaruso and G. Adesso (2019). “Demonstrating quantum coherence and metrology that is resilient to transversal noise”. Physical Review Letters 123: 180504. https://doi.org/10.1103/PhysRevLett.123.180504.
  18. A. Castellini, R. LoFranco, L. Lami, A. Winter, G. Adesso and G. Compagno (2019). “Indistinguishability-enabled coherence for quantum metrology”. Physical Review A 100: 012308. https://doi.org/10.1103/PhysRevA.100.012308.
  19. L. Ares and A. Luis (2021). “Signal estimation and coherence”. Optics Letters 46: 5409. https://doi.org/10.1364/OL.439197
  20. R. Lecamwasam, S. Assad, J. Hope, P. Lam, J. Thompson and M. Gu (2024). “Relative entropy of coherence quantifies performance in Bayesian metrology”. arXiv 2024, arXiv:2401.16020.
  21. D. Girolami, T. Tufarelli and G. Adesso (2013). “Characterizing nonclassical correlations via local quantum uncertainty”. Physical Review Letters 110: 240402. https://doi.org/10.1103/PhysRevLett.110.240402.
  22. A. Farace, A. De Pasquale, L. Rigovacca and V. Giovannetti (2014). “Discriminating strength: A bona fide measure of non-classical correlations”. New Journal of Physics, 16: 7, 073010 https://doi.org/10.1088/1367-2630/16/7/073010.
  23. A. Streltsov, G. Adesso and M. B. Plenio (2017). “Colloquium: Quantum coherence as a resource”. Reviews of Modern Physics, 89: 041003. https://doi.org/10.1103/RevModPhys.89.041003.
  24. R. Takagi, B. Regula, K. Bu, Z.W. Liu and G. Adesso (2019). “Operational advantage of quantum resources in subchannel discrimination”. Physical Review Letters 122: 140402. https://doi.org/10.1103/PhysRevLett.122.140402.
  25. M. Wilde (2020, June). “Coherent quantum channel discrimination”, in Proceedings of the 2020 IEEE International Symposium on Information Theory, pp. 1921–1926. https://doi.org/10.1109/ISIT44484.2020.9174425.
  26. Z.M. Rossi, J. Yu, I.L. Chuang and S. Sugiura (2022). “Quantum advantage for noisy channel discrimination”. Physical Review A, 105: 032401. https://doi.org/10.1103/PhysRevA.105.032401.
  27. S. Chen, S. Zhou, A. Seif and L. Jiang (2022). “Quantum advantages for Pauli channel estimation”. Physical Review A, 105: 032435. https://doi.org/10.1103/PhysRevA.105.032435.
  28. J. Ma, B. Yadin, D. Girolami, V. Vedral and M. Gu (2016). “Converting coherence to quantum correlations”. Physical Review Letters, 116: 160407. https://doi.org/10.1103/PhysRevLett.116.160407.
  29. X. Hu and H. Fan (2016). “Extracting quantum coherence via steering”. Scientific Reports 6: 34380. https://doi.org/10.1038/srep34380.
  30. Hu, X., A. Milne, B. Zhang and H. Fan (2016). “Quantum coherence of steered states.” Scientific Reports, 6: 19365. https://doi.org/10.1038/srep19365.
  31. D. Mondal, T. Pramanik and A. K. Pati (2017). “Nonlocal advantage of quantum coherence”. Physical Review A, 95: 010301(R). https://doi.org/10.1103/PhysRevA.95.010301.
  32. D. Girolami and B. Yadin (2017). “Witnessing multipartite entanglement by detecting asymmetry”. Entropy, 19: 124. https://doi.org/10.3390/e19030124.
  33. Z. Y. Ding, H. Yang, H. Yuan, D. Wang, J. Yang and L. Ye (2019). “Experimental investigation of the nonlocal advantage of quantum coherence”. Physical Review A, 100: 022308. https://doi.org/10.1103/PhysRevA.100.022308.
  34. K. Lee, J. Lin, K. Lemr, A. Cernoch, A. Miranowicz, F. Nori, H. Ku and Y. Chen (2023). “Coherence distillation unveils Einstein-Podolsky-Rosen steering”. arXiv 2023, arXiv:2312.01055.
  35. G. Karpat, B. Cakmak and F. F. Fanchini (2014). “Quantum coherence and uncertainty in the anisotropic XY chain”. Physical Review B, 90: 104431. https://doi.org/10.1103/PhysRevB.90.104431.
  36. B. Cakmak, G. Karpat and F. Fanchini (2015). “Factorization and criticality in the anisotropic XY chain via correlations”. Entropy, 17: 790. https://doi.org/10.3390/e17020790.
  37. A.L. Malvezzi, G. Karpat, B. Cakmak, F.F. Fanchini, T. Debarba and R. O. Vianna (2016). “Quantum correlations and coherence in spin-1 Heisenberg chains”. Physical Review B, 93: 184428. https://doi.org/10.1103/PhysRevB.93.184428.
  38. J. J. Chen, J. Cui, Y. R. Zhang and H. Fan (2016). “Coherence susceptibility as a probe of quantum phase transitions”. Physical Review A, 94: 022112. https://doi.org/10.1103/PhysRevA.94.022112.
  39. Y. Li, H. Lin (2016). “Quantum coherence and quantum phase transitions”. Scientific Reports, 6: 26365. https://doi.org/10.1038/srep26365.
  40. Z. D. Shi, H. Goldman, Z. Dong and T. Senthil (2024). “Excitonic quantum criticality: From bilayer graphene to narrow Chern bands”. arXiv 2024, arXiv:2402.12436.
  41. T. Baumgratz, M. Cramer and M. B. Plenio (2014). “Quantifying coherence”. Physical Review Letters, 113: 140401. https://doi.org/10.1103/PhysRevLett.113.140401
  42. E. Chitambar and G. Gour (2019). “Quantum resource theories”. Reviews of Modern Physics, 91: 025001. https://doi.org/10.1103/RevModPhys.91.025001.
  43. J. Aberg (2006). “Quantifying superposition”. arXiv 2006, arXiv:quant-ph/0612146.
  44. A. Winter and D. Yang (2016). “Operational resource theory of coherence”. Physical Review Letters, 116: 120404. https://doi.org/10.1103/PhysRevLett.116.120404.
  45. B. Yadin, J. Ma, D. Girolami, M. Gu and V. Vedral (2016). “Quantum processes which do not use coherence”. Physical Review X, 6: 041028. https://doi.org/10.1103/PhysRevX.6.041028.
  46. E. Chitambar and G. Gour (2016) “Comparison of incoherent operations and measures of coherence”. Physical Review A, 94: 052336. https://doi.org/10.1103/PhysRevA.94.052336.
  47. E. Chitambar and G. Gour (2016). “Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence”. Physical Review Letters, 117: 030401. https://doi.org/10.1103/PhysRevLett.117.030401.
  48. I. Marvian and R. W. Spekkens (2016). “How to quantify coherence: Distinguishing speakable and unspeakable notions”. Physical Review A, 94: 052324. https://doi.org/10.1103/PhysRevA.94.052324.
  49. J. Vicente and A. Streltsov (2017). “Genuine quantum coherence”. Journal of Physics A, 50: 045301. https://doi.org/10.1088/1751-8121/50/4/045301.
  50. R. Takagi and B. Regula (2019). “General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks”. Physical Review X 9: 031053. https://doi.org/10.1103/PhysRevX.9.031053.
  51. S. Du, Z. Bai and Y. Guo (2015). “Conditions for coherence transformations under incoherent operations”. Physical Review A, 91: 052120. https://doi.org/10.1103/PhysRevA.91.052120.
  52. A. Streltsov, S. Rana, P. Boes and J. Eisert (2017). “Structure of the resource theory of quantum coherence”. Physical Review Letters, 119: 140402. https://doi.org/10.1103/PhysRevLett.119.140402.
  53. Q. Zhao, Y. Liu, X. Yuan, E. Chitambar and X. Ma (2018). “One-shot coherence dilution”. Physical Review Letters, 120: 070403. https://doi.org/10.1103/PhysRevLett.120.070403.
  54. G. Torun and A. Yildiz (2018). “Deterministic transformations of coherent states under incoherent operations”. Physical Review A, 97: 052331. https://doi.org/10.1103/PhysRevA.97.052331
  55. G. Torun, L. Lami, G. Adesso and A. Yildiz (2019). “Optimal distillation of quantum coherence with reduced waste of resources”. Physical Review A, 99: 012321. https://doi.org/10.1103/PhysRevA.99.012321
  56. L. Lami, B. Regula, G. Adesso (2019). “Generic bound coherence under strictly incoherent operations”. Physical Review Letters, 122: 150402. https://doi.org/10.1103/PhysRevLett.122.150402
  57. S. Du, Z. Bai and X. Qi (2019). “Coherence manipulation under incoherent operations”. Physical Review A, 100: 032313. https://doi.org/10.1103/PhysRevA.100.032313
  58. C.L. Liu and D.L. Zhou (2019). “Deterministic coherence distillation”. Physical Review Letters, 123: 070402. https://doi.org/10.1103/PhysRevLett.123.070402
  59. K. Wu et al. (2020). “Quantum coherence and state conversion: Theory and experiment”. npj Quant. Info., 6: 22. https://doi.org/10.1038/s41534-020-0250-z
  60. K. Fang and Z. W. Liu (2020). “No-go theorems for quantum resource purification”. Physical Review Letters, 125: 060405. https://doi.org/10.1103/PhysRevLett.125.060405
  61. G. Torun, H. Senyasa and A. Yildiz. (2021). “Resource theory of superposition: State transformations”. Physical Review A, 103: 032416. https://doi.org/10.1103/PhysRevA.103.032416
  62. L. Zhang, T. Gao and F. Yan (2021). “Transformations of multilevel coherent states under coherence-preserving operations”. Science China Physics, Mechanics & Astronomy, 64: 260312. https://doi.org/10.1007/s11433-021-1696-y
  63. G. Torun, O. Pusuluk and O. Mustecaplioglu. (2023). “A compendious review of majorization-based resource theories: Quantum information and quantum thermodynamics”. Turkish Journal of Physics, 47: 141. https://doi.org/10.55730/1300-0101.2744
  64. Y. Yao, G. H. Dong, X. Xiao, M. Li and C. P. Sun (2017). “Interpreting quantum coherence through a quantum measurement process”. Physical Review, 96: 052322. https://doi.org/10.1103/PhysRevA.96.052322
  65. K. Tan, S. Choi and H. Jeong (2019). “Optimizing nontrivial quantum observables using coherence”. New Journal of Physics, 21: 023013. https://doi.org/10.1088/1367-2630/ab0430.
  66. C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston and G. Adesso (2016). “Robustness of coherence: An operational and observable measure of quantum coherence”. Physical Review Letters, 116: 150502. https://doi.org/10.1103/PhysRevLett.116.150502.
  67. Y. Yao, D. Li and C. P. Sun (2019). “Quantum coherence fraction”. Physical Review A, 100: 032324. https://doi.org/10.1103/PhysRevA.100.032324
  68. D. Sauerwein, N. R. Wallach, G. Gour and B. Kraus (2018). “Transformations among pure multipartite entangled states via local operations are almost never possible”. Physical Review X, 8: 031020. https://doi.org/10.1103/PhysRevX.8.031020.
  69. S. Du and Z. Bai (2022). “Conversion of Gaussian states under incoherent Gaussian operations”. Physical Review A, 105: 022412. https://doi.org/10.1103/PhysRevA.105.022412.
  70. O. Kruger and R. F. Werner (2005). “Some open problems in quantum information theory”. arXiv 2005, arXiv:quant-ph/0504166.
  71. Available at: https://oqp.iqoqi.oeaw.ac.at/ (Accessed on 22 June 2024).
  72. J. Vicente (2024). “Maximally entangled mixed states for a fixed spectrum do not always exist”. Physical Review Letters, 133: 050202. https://doi.org/10.1103/PhysRevLett.133.050202.
  73. J. Xu (2024). “Coherence and imaginarity of quantum states”. arXiv 2024, arXiv:2404.06210.
  74. H. Zhao and C. Yu (2018). “Coherence measure in terms of the Tsallis relative α entropy”. Scientific Reports, 8: 299. https://doi.org/10.1038/s41598-017-18692-1
  75. A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera and G. Adesso (2015). “Measuring quantum coherence with entanglement”. Physical Review Letters, 115: 020403. https://doi.org/10.1103/PhysRevLett.115.020403
  76. K. Bu, N. Anand and U. Singh (2018). “Asymmetry and coherence weight of quantum states”. Physical Review A, 97: 032342. https://doi.org/10.1103/PhysRevA.97.032342
  77. S. Du, Z. Bai and X. Qi (2015). “Coherence measures and optimal conversion for coherent states”. Quantum Information & Computation, 15: 1307. https://doi.org/10.26421/QIC15.15-16-3
  78. C. Datta, R. Ganardi, T. V. Kondra and A. Streltsov (2023). “Is there a finite complete set of monotones in any quantum resource theory?” Physical Review Letters, 130: 240204. https://doi.org/10.1103/PhysRevLett.130.240204
  79. C. Li and H. Woerdeman (1997). “Special classes of positive and completely positive maps”. Linear Algebra and its Applications, 255: 247. https://doi.org/10.1016/S0024-3795(96)00776-8
  80. V. Paulsen (2003). Completely Bounded Maps and Operator Algebras, Cambridge: Cambridge University Press.
  81. J. Watrous (2018). Theory of Quantum Information, Cambridge: Cambridge University Press.
  82. M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston and G. Adesso (2016). “Robustness of asymmetry and coherence of quantum states”. Physical Review A, 93: 042107. https://doi.org/10.1103/PhysRevA.93.042107.
  83. M. Sion (1958). “On general minimax theorems”. Pacific Journal of Mathematics, 8: 171.
  84. R. A. Horn and C. R. Johnson (1991). Topics in Matrix Analysis, Cambridge: Cambridge University Press.
DOI: https://doi.org/10.2478/qic-2024-0007 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 17 - 30
Submitted on: Aug 9, 2024
Accepted on: Sep 26, 2024
Published on: Oct 17, 2024
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Shuanping Du, Zhaofang Bai, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.