References
- O. Gühne and G. Tóth (2009). “Entanglement detection”. Physics Reports, 474: 1–6, 1–75.
- A. Peres (1996). “Separability criterion for density matrices”. Physical Review Letters, 77: 8, 1413.
- M. Horodecki, P. Horodecki and R. Horodecki (1996). “Separability of mixed states: Necessary and sufficient conditions”. Physics Letters A, 223, 1–8.
- L. Gurvits (2004). “Classical complexity and quantum entanglement”. Journal of Computer and System Sciences, 69: 3, 448–484.
- D. Cariello (2016). “Completely reducible maps in quantum information theory”. IEEE Transactions on Information Theory, 62: 4, 1721–1732.
- G. Tóth and O. Gühne (2010). “Separability criteria and entanglement witnesses for symmetric quantum states”. Applied Physics B, 98: 4, 617–622.
- M. Horodecki, P. Horodecki and R. Horodecki (2006). “Separability of mixed quantum states: Linear contractions approach”. Open Systems & Information Dynamics, 13, 103.
- O. Rudolph (2005). “Computable cross-norm criterion for separability”. Letters in Mathematical Physics, 70, 57–64.
- O. Rudolph (2005). “Further results on the cross norm criterion for separability”. Quantum Information Processing, 4, 219–239.
- J.M. Leinaas, J. Myrheim and E. Ovrum (2006). “Geometrical aspects of entanglement”. Physical Review A, 74: 3, 012313.
- W. Dür, G. Vidal and J.I. Cyrac (2002). “Optimal conversion of nonlocal unitary operations”. Physical Review Letters, 89: 5, 057901.
- B. Kraus and J.I. Cyrac (2001). “Optimal creation of entanglement using a two-qubit gate”. Physical Review A, 63: 6, 062309.
- O. Gittsovich, O. Gühne, P. Hyllus and J. Eisert (2008). “Unifying several separability conditions using the covariance matrix criterion”. Physical Review A, 78, 052319.
- P. Horodecki, M. Lewenstein, G. Vidal and I. Cirac (2000). “Operational criterion and constructive checks for the separability of low-rank density matrices”. Physical Review A, 62: 3, 032310.
- P. Horodecki, J.A. Smolin, B.M. Terhal and A.V. Thapliyal (2003). “Rank two bipartite bound entangled states do not exist”. Theoretical Computer Science, 292: 3, 589–596.
- C.-K. Li, Y.-T. Poon and X. Wang (2014). “Ranks and eigenvalues of states with prescribed reduced states”. Electronic Journal of Linear Algebra, 27, 935–950.
- H. Chen (2003). “Schmidt numbers of low-rank bipartite mixed states”. Physical Review A, 67: 6, 062301.
- E.P. Hanson, C. Rouzé and D. Stilck França (2020). “Eventually entanglement breaking markovian dynamics: Structure and characteristic times”. Annales Henri Poincaré, 21, 1517–1571.
- M. Weiner (2013). “A gap for the maximum number of mutually unbiased bases”. Proceedings of the American Mathematical Society, 141: 6, 1963–1969.
- D. Cariello (2014). “Separability for weakly irreducible matrices”. Quantum Information & Computation, 14: 15–16, 1308–1337.
- D. Cariello (2019). “Sinkhorn-Knopp theorem for rectangular positive maps”. Linear and Multilinear Algebra, 67, 2345–2365.
- M. Marcus and H. Minc (1992). A Survey of Matrix Theory and Matrix Inequalities, volume 14, Courier Corporation.
- R. Sinkhorn and P. Knopp (1967). “Concerning nonnegative matrices and doubly stochastic matrices”. Pacific Journal of Mathematics, 21: 2, 343–348.
- R. Bhatia (2009). Positive Definite Matrices, Princeton University Press.