Have a personal or library account? Click to login
Quantum State Tomography of Photonic Qubits with Realistic Coherent Light Sources Cover

Quantum State Tomography of Photonic Qubits with Realistic Coherent Light Sources

Open Access
|Nov 2024

References

  1. M. Paris and J. Řeháček (eds.) (2004). Quantum State Estimation, Heidelberg: Springer.
  2. E. Toninelli, B. Ndagano, A. Valles, B. Sephton, I. Nape, A. Ambrosio, F. Capasso, M.J. Padgett, and A. Forbes (2019). “Concepts in quantum state tomography and classical implementation with intense light: A tutorial”. Advances in Optics and Photonics, 11, 67–134.
  3. A. Czerwinski (2022). “Selected concepts of quantum state tomography”. Optics, 3, 268–286.
  4. V. Gebhart, R. Santagati, A.A. Gentile, E.M. Gauger, D. Craig, N. Ares, L. Banchi, F. Marquardt, L. Pezzè, and C. Bonato (2023). “Learning quantum systems”. Nature Reviews Physics, 5, 141–156.
  5. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger (2005). “Experimental one-way quantum computing”. Nature, 434, 169–176.
  6. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, and G.J. Milburn (2007). “Linear optical quantum computing with photonic qubits”. Reviews of Modern Physics, 79, 135–174.
  7. M. Wei, C.-H. Zhang, J. Li, J.-L. Zhu, and Q. Wang (2022). “Experimental demonstration of tomography-based quantum key distribution”. Optics Letters, 47, 6285–6288.
  8. A. Slaoui, N. Ikken, L. Btissam Drissi, and R. Ahl Laamara (2023). “Quantum communication protocols: from theory to implementation in the quantum computer,” in B. Carpentieri (ed.), Quantum Computing - Innovations and Applications in Modern Research, London: IntechOpen.
  9. A. Slaoui, M. El Kirdi, R. Ahl Laamara, M. Alabdulhafith, S.A. Chelloug, and A.A. Abd El-Latif (2024). “Cyclic quantum teleportation of two-qubit entangled states by using six-qubit cluster state and six-qubit entangled state”. Scientific Reports, 14, 15856.
  10. A. Ali, S. Al-Kuwari, and S. Haddadi (2024). “Trade-off relations of quantum resource theory in Heisenberg models”. Physica Scripta, 99, 055111.
  11. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White (2001). “Measurement of qubits”. Physical Review A, 64, 052312.
  12. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat (2005). “Photonic state tomography”. Advances In Atomic, Molecular, and Optical Physics, 52, 105–159.
  13. R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein (2013). “Inherent polarization entanglement generated from a monolithic semiconductor chip”. Scientific Reports, 3, 2314.
  14. G.P. Temporão, P. Ripper, T.B. Guerreiro, and G.C. do Amaral (2024). “Two-photon quantum state tomography of photonic qubits”. Physical Review A, 109, 022402.
  15. S. W. Hasinoff (2014). “Photon, poisson noise”, in K. Ikeuchi (ed.), Computer Vision, Boston, MA: Springer, pp. 608–610.
  16. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden (2010). “Quantum key distribution and 1 Gbps data encryption over a single fibre”. New Journal of Physics, 12, 063027.
  17. B. Fröhlich, J.F. Dynes, M. Lucamarini, A.W. Sharpe, S.W.B. Tam, Z. Yuan, and A.J. Shields (2015). “Quantum secured gigabit optical access networks”. Scientific Reports, 5, 18121.
  18. A. Czerwinski (2022). “Entanglement characterization by single-photon counting with random noise”. Quantum Information & Computation, 22, 1–16.
  19. H. Wang, K. He, Y. Hao, and S. Yang (2022). “Quantum tomography with Gaussian noise”. Quantum Information & Computation, 22, 1144–1157.
  20. A. Czerwinski and J. Szlachetka (2022). “Efficiency of photonic state tomography affected by fiber attenuation”. Physical Review A, 105, 062437.
  21. A. Pedram, V.R. Besaga, F. Setzpfandt, and Ö.E. Müstecaplıoğlu (2024). “Nonlocality enhanced precision in quantum polarimetry via entangled photons”. Advanced Quantum Technologies, 2400059.
  22. B. Mukherjee (2006). Optical WDM Networks, New York: Springer Science & Business Media.
  23. C. Gobby, Z.L. Yuan, and A.J. Shields (2004). “Quantum key distribution over 122 km of standard telecom fiber”. Applied Physics Letters, 84, 3762–3764.
  24. A. Tomita, K.-I. Yoshino, Y. Nambu, A. Tajima, A. Tanaka, S. Takahashi, W. Maeda, S. Miki, Z. Wang, M. Fujiwara, and M. Sasaki (2010). “High speed quantum key distribution system”. Optical Fiber Technology, 16, 55–62.
  25. Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang (2019). “Cost-efficient quantum key distribution (QKD) over WDM networks”. Journal of Optical Communications and Networking, 11, 285–298
  26. J. Zhou, R. Cadeddu, E. Casaccia, C. Cavazzoni, and M.J. O’Mahony (1996). “Crosstalk in multiwavelength optical cross-connect networks”. Journal of Lightwave Technology, 14, 1423–1435.
  27. I.T. Monroy, and E. Tangdiongga (2013). Crosstalk in WDM Communication Networks, New York: Springer Science & Business Media.
  28. J.M. Renes, R. Blume-Kohout, A.J. Scott, and C.M. Caves (2004). “Symmetric informationally complete quantum measurements”. Journal of Mathematical Physics, 45, 2171–2180.
  29. C.A. Fuchs, M.C. Hoang, and B.C. Stacey (2017). “The SIC question: History and state of play”. Axioms, 6, 21.
  30. C. Paiva-Sánchez, E. Burgos-Inostroza, O. Jiménez, and A. Delgado (2010). “Quantum tomography via equidistant states”. Physical Review A, 82, 032115.
  31. A. Acharya, T. Kypraios, and M. Guta (2019). “A comparative study of estimation methods in quantum tomography”. Journal of Physics A: Mathematical and Theoretical, 52, 234001.
  32. A. Czerwinski, K. Sedziak-Kacprowicz, and P. Kolenderski (2021). “Phase estimation of time-bin qudits by time-resolved single-photon counting”. Physical Review A, 103, 042402.
  33. M.A. Nielsen and I.L. Chuang (2000). Quantum Computation and Quantum Information, Cambridge: Cambridge University Press.
  34. R. Jozsa (1994). “Fidelity for mixed quantum states”. Journal of Modern Optics, 41, 2315–2323.
  35. A. Uhlmann, (1976). “The ‘transition probability’ in the state space of a ⋆-algebra”. Reports on Mathematical Physics, 9, 273–279.
  36. P. Mironowicz, M. Grünfeld, and M. Bourennane (2024). “Generalized measurements on qubits in quantum randomness certification and expansion”. Physical Review Applied, 22, 044041.
  37. P. Rübeling, J. Heine, R. Johanning, and M. Kues (2024). “Quantum and coherent signal transmission on a single-frequency channel via the electro-optic serrodyne technique”. Science Advances, 10, eadn8907.
  38. A.K. Khan, Y.H. Dar, E.C. Vagenas, S.S. Wani, S. Al-Kuwari, and M. Faizal (2024). “Effects of underlying topology on quantum state discrimination”. European Physical Journal C, 84, 240.
DOI: https://doi.org/10.2478/qic-2024-0002 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 31 - 39
Submitted on: Aug 29, 2024
Accepted on: Oct 31, 2024
Published on: Nov 18, 2024
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2024 Artur Czerwinski, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.