Have a personal or library account? Click to login
Enumeration of inversion sequences according to the outer and inner perimeter Cover

Enumeration of inversion sequences according to the outer and inner perimeter

By: Toufik Mansour and  Mark Shattuck  
Open Access
|Dec 2024

References

  1. M. Archibald, A. Blecher and A. Knopfmacher, Parameters in inversion sequences, Math. Slovaca 73(3) (2023), 551–564.
  2. A. Blecher, C. Brennan and A. Knopfmacher, The inner site-perimeter of compositions, Quaest. Math. 43(1) (2020), 55–66.
  3. A. Blecher, C. Brennan, A. Knopfmacher and T. Mansour, The site-perimeter of words, Trans. Combin. 6(2) (2017), 37–48.
  4. A. Blecher, A. Knopfmacher and T. Mansour, Alphabetic points and records in inversion sequences, Discrete Math. Lett. 10 (2022), 85–90.
  5. M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86–112.
  6. W. Cao, E. Y. Jin and Z. Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Appl. Math. 260 (2019), 86–97.
  7. S. Corteel, M. A. Martinez, C. D. Savage and M. Weselcouch, Patterns in inversion sequences I, Discrete Math. Theor. Comput. Sci. 18(2) (2016), Art. #2.
  8. D. Kim and Z. Lin, Refined restricted inversion sequences, Sém. Lothar. Combin. 78B (2017), Art. #52.
  9. Z. Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, European J. Combin. 70 (2018), 202–211.
  10. Z. Lin and and S. H. F. Yan, Vincular patterns in inversion sequences, Appl. Math. Comput. 364 (2020), Art. 124672.
  11. T. Mansour, Border and tangent cells in bargraphs, Discrete Math. Lett. 1 (2019), 26–29.
  12. T. Mansour, The perimeter and the site-perimeter of set partitions, Electron. J. Combin. 26 (2019), Art. P2.30.
  13. T. Mansour and A. Sh. Shabani, Enumerations on bargraphs, Discrete Math. Lett. 2 (2019), 65–94.
  14. T. Mansour and M. Shattuck, Pattern avoidance in inversion sequences, Pure Math. Appl. 25 (2015), 157–176.
  15. T. Mansour and M. Shattuck, Statistics on bargraphs of inversion sequences of permutations, Discrete Math. Lett. 4 (2020), 37–44.
  16. T. Mansour and M. Shattuck, Counting inversion sequences by parity successions and runs, Discrete Appl. Math. 330 (2023), 24–39.
  17. T. Mansour and M. Shattuck, Enumeration of smooth inversion sequences and proof of a recent related conjecture, J. Difference Equ. Appl. 29(3) (2023), 270–296.
  18. M. Martinez and C. Savage, Patterns in inversion sequences II: inversion sequences avoiding triples of relations, J. Integer Seq. 21 (2018), Art. 18.2.2.
  19. N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2020. Available at https://oeis.org.
  20. R. P. Stanley, Enumerative Combinatorics, Volume I, Cambridge University Press, Cambridge, UK (1997).
  21. C. Yan and Z. Lin, Inversion sequences avoiding pairs of patterns, Discrete Math. Theor. Comput. Sci. 22(1) (2020), Art. 6539.
  22. S. H. F. Yan, Bijections for inversion sequences, ascent sequences and 3-nonnesting set partitions, Appl. Math. Comput. 325 (2018), 24–30.
Language: English
Page range: 31 - 53
Submitted on: Jul 10, 2023
Published on: Dec 31, 2024
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Toufik Mansour, Mark Shattuck, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.