Have a personal or library account? Click to login
The longest increasing subsequence in involutions avoiding 3412 and another pattern Cover

The longest increasing subsequence in involutions avoiding 3412 and another pattern

Open Access
|Feb 2023

References

  1. [1] J. Baik, P. Deift and T. Suidan, Combinatorics and Random Matrix Theory, AMS, 2016.
  2. [2] J. Baik and E. M. Rains, The asymptotics of monotone subsequences of involutions, Duke Math. J., 109 (2001) 205–281.10.1215/S0012-7094-01-10921-6
  3. [3] M. Bòna, C. Homberger, J. Pantone and V. Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, Australas. J. Combin., 64 (2016) 88–119.
  4. [4] E. Deutsch, A. J. Hildebrand and H. S. Wilf, Longest increasing subsequences in pattern-restricted permutations, Electron. J. Combin., 9 (2002-2003) #R12.10.37236/1684
  5. [5] E. S. Egge, Restricted 3412-avoiding involutions, continued fractions, and Chebyshev polynomials, Adv. in Appl. Math., 33 (2004) 451–475.10.1016/j.aam.2003.09.006
  6. [6] E. S. Egge and T. Mansour, Bivariate generating functions for involutions restricted by 3412, Adv. in Appl. Math., 36 (2006) 118–137.10.1016/j.aam.2005.01.005
  7. [7] O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, PhD thesis, Université Bordeaux I, 1995.
  8. [8] S. Kitaev, Patterns in permutations and words, Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg, 2011.10.1007/978-3-642-17333-2
  9. [9] M. Kiwi, A concentration bound for the longest increasing subsequence of a randomly chosen involution, Discrete Appl. Math., 154 (2006) 1816–1823.10.1016/j.dam.2006.03.025
  10. [10] T. Mansour and G. Yıldırım, Longest increasing subsequences in involutions avoiding patterns of length three, Turkish J. Math., 43 (2019) 2183–2192.10.3906/mat-1901-86
  11. [11] T. Mansour and G. Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, Adv. in Appl. Math., 116 (2020) 1–17.10.1016/j.aam.2020.102002
  12. [12] A. Reifegerste, On the diagram of 132-avoiding permutations, European J. Combin., 24 (2003) 759–776.10.1016/S0195-6698(03)00065-9
  13. [13] T. Rivlin, Chebyshev polynomials. From approximation theory to algebra and number theory, John Wiley, New York, 1990.
  14. [14] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge University Press, 2015.10.1017/CBO9781139872003
  15. [15] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences, at http://oeis.org, 2010.
  16. [16] R. P. Stanley, Increasing and decreasing subsequences and their variants, International Congress of Mathematicians, Vol. I, Eur. Math. Soc., 2007, pp.545–579.10.4171/022-1/21
  17. [17] R. P. Stanley, A survey of alternating permutations, In Combinatorics and Graphs, Contemp. Math., 531, Amer. Math. Soc., 2010, pp. 165–196.10.1090/conm/531/10466
Language: English
Page range: 11 - 21
Submitted on: Jan 20, 2021
Accepted on: Jan 31, 2021
Published on: Feb 13, 2023
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Toufik Mansour, Reza Rastegar, Alexander Roitershtein, Gökhan Yıldırım, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.