Have a personal or library account? Click to login
Solution of the real and complex eigenvalue problems in the ABS class Cover

Solution of the real and complex eigenvalue problems in the ABS class

By: József Abaffy  
Open Access
|Nov 2022

References

  1. [1] J. Abaffy, E. Spedicato: ABS Projections Algorithms Mathematical Techniques for Linear and Nonlinear Algebraic Equations, Ellis Horwood Ltd, Chichester, England, (1989)
  2. [2] J. Abaffy M. Bertocchi, A.Torriero c Perturbations of M-matrices via ABS methods and their applications to input-output analysis Applied Mathematics and Computation Vol. 94 145 170 (1998)10.1016/S0096-3003(97)10085-6
  3. [3] J. Abaffy, Sz. Fodor: Reortogonalization methods in ABS classes, Acta Polytechnica Hungarica Vol 12 No 6 pp. 23-41 (2015)10.12700/APH.12.6.2015.6.2
  4. [4] J. Abaffy, E. Feng, A. Galántai: Introduction to ABS methods for equations and Optimization Part I. Saarbrücken (Germany) : GlobeEdit 131 pages (2017)
  5. [5] J. Abaffy, Sz. Fodor: ABS-Based Direct Method for Solving Complex Systems of Linear Equations Mathematics 9 : 19 p. 2527 (2021)10.3390/math9192527
  6. [6] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide (http://www.netlib.org/lapack/lug/la-pack_lug.html), Third Edition, SIAM, Philadelphia, (1999).10.1137/1.9780898719604
  7. [7] W. E. Arnoldi., The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 pp. 17-29. (1951)10.1090/qam/42792
  8. [8] Jesse L. Barlow, Reorthogonalization for the Golub–Kahan–Lanczos bidiagonal reduction, Numer. Math. 124:237–278 DOI 10.1007/s00211-013-0518-8 (2013)
  9. [9] W. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart Reorthogonalization and Stable Algorithms for Updating the Gram-Schmidt QR Factorization, Math. of Comput., Vol 30, No. 136 pp. 772-795 (1976)10.1090/S0025-5718-1976-0431641-8
  10. [10] A. Galántai, Cs. J. Heged¶s: Hyman’s method revisited, J. of Comput. and Applied Math. Vol 226 pp. 246-258 (2009)10.1016/j.cam.2008.08.004
  11. [11] H. Golub, C.F. Van Loan: Matrix computation, North Oxford Academic Press, Oxford (1983)
  12. [12] Cs. J. Heged¶s: Reorthogonalization Methods Revisited Ata Polytechnica Hungarica 12 : 8 pp. 7-28. (2015)10.12700/APH.12.8.2015.8.1
  13. [13] W. Heisenberg: Die beobachtbaren Grössen in der Theorie der Elementarteilchen. I Z. Phys. 120 (7–10):pp. 513–538. (1943)10.1007/BF01329800
  14. [14] W. Heisenberg: Die beobachtbaren Größen in der Theorie der Elementarteilchen. II Z. Phys 120, pp 673–702 (194310.1007/BF01336936
  15. [15] W. Heisenberg: Die beobachtbaren Größen in der Theorie der Elementarteilchen. III Z. Phys. 123, pp. 93–112 (1944)10.1007/BF01375146
  16. [16] D.L. Karney, R T. Gregory: A collection of matrices for testing computational algorithms Wiley pp 163 (1969)
  17. [17] W.W. Leontief. „An Alternative to Aggregation in Input-Output Analysis and National Accounts”. Review of Economics and Statistics. 49 (3): 412–419. (1967) doi: 10.2307/1926651. JSTOR 1926651
  18. [18] N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood Cli s, N.J. 07632. ISBN 0-13-880047-2.(1980),
  19. [19] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Lin. Alg. Appl., Vol. 34, pp. 269-295. (1980)10.1016/0024-3795(80)90169-X
  20. [20] Y. Saad and M. H. Schultz: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. ScI. Stat. Comput Vo|. 7, No. 3, pp 856-869 July (1986) Read More-https://epubs.siam.org/doi/abs/10.1137/090705810.1137/0907058
  21. [21] G. W. Stewart, Matrix Algorithms II: Eigensystems, SIAM, Vol. II. (2001)10.1137/1.9780898718058
  22. [22] O. S. Vaidya and S. Kumarb, Analytic hierarchy process: An overview of applications, European Journal of Operational Research Vol. 169, No-1 pp. 1-29 (2006)10.1016/j.ejor.2004.04.028
  23. [23] D. S. Watkins: The Matrix Eigenvalue Problem, Society for Industrial and Applied Mathematics 451 pages (2007)10.1137/1.9780898717808
  24. [24] J. H. Wilkinson Convergence of the LR, QR, and related algorithms, The Computer Journal, pp 77-84 (1965,)10.1093/comjnl/8.1.77
  25. [25] J.H. Wilkinson: Algebraic eigenvalue problem Oxford University Press, 683 pages (1965)
Language: English
Page range: 92 - 109
Submitted on: Jul 30, 2021
Published on: Nov 7, 2022
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 József Abaffy, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.