Have a personal or library account? Click to login
Computability of sets in Euclidean space Cover
Open Access
|Nov 2022

References

  1. [1] Ilona Bereczki. Nem elemi rekurzív függvény létezése. In Az Első Magyar Matematikai Kongresszus közleményei, Magyar Matematikai Kongresszus közleményei, pages 409–417, 1952. cited in [14] and also reviewed in Journal of Symbolic Logic.
  2. [2] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.10.1007/978-1-4612-0701-6
  3. [3] Vasco Brattka. The emperor’s new recursiveness: the epigraph of the exponential function in two models of computability, pages 63–72. World Sci. Publ., River Edge, NJ, 2003.10.1142/9789812704979_0005
  4. [4] Vasco Brattka and Klaus Weihrauch. Computability on subsets of Euclidean space. I. Closed and compact subsets. Theoretical Computer Science, 219:65–93, 1999.10.1016/S0304-3975(98)00284-9
  5. [5] Antonin Callard and Mathieu Hoyrup. Descriptive complexity on non-Polish spaces. In STACS 2020, volume 154 of 37th Symposium on Theoretical Aspects of Computer Science, page 16, 2020.
  6. [6] Armin Hemmerling. Approximate decidability in euclidean spaces. Mathematical Logic Quarterly, 49:34–56, 2003.10.1002/malq.200310003
  7. [7] Peter Hertling. Is the Mandelbrot set computable? Mathematical Logic Quarterly, 51:5–18, 2005.10.1002/malq.200310124
  8. [8] Zvonko Iljazović and Lucija Validžić. Computable neighbourhoods of points in semicomputable manifolds. Annals of Pure and Applied Logic, 168(4):840–859, 2017.10.1016/j.apal.2016.10.015
  9. [9] Boris A Kushner. The constructive mathematics of AA Markov. The American Mathematical Monthly, 113(6):559–566, 2006.10.1080/00029890.2006.11920338
  10. [10] Matthew W Parker. Three concepts of decidability for general subsets of uncountable spaces. Theoretical Computer Science, 351(1):2–13, 2006.10.1016/j.tcs.2005.09.052
  11. [11] Roger Penrose. The emperor’s new mind. The Clarendon Press Oxford University Press, New York, 1989.
  12. [12] Petrus H Potgieter. Hypercomputing the mandelbrot set? arXiv preprint cs/0604003, 2006.
  13. [13] Marian B Pour-El and J. Ian Richards. Computability in analysis and physics. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1989.10.1007/978-3-662-21717-7
  14. [14] Rózsa Péter. Rekurzív definíciók, melyek változó számú korábbi függvényértéket használnak fel. Matematikai lapok, 5(1):7–9, 1954.
  15. [15] Cristobal Rojas and Michael Yampolsky. Computable geometric complex analysis and complex dynamics. In Handbook of Computability and Complexity in Analysis, pages 143–172. Springer, 2021.10.1007/978-3-030-59234-9_5
  16. [16] AM Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2:230–265, 1936.10.1112/plms/s2-42.1.230
  17. [17] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2000. An introduction.10.1007/978-3-642-56999-9
  18. [18] Martin Ziegler. Computable operators on regular sets. Mathematical Logic Quarterly, 50:392–404, 2004.10.1002/malq.200310107
Language: English
Page range: 65 - 77
Submitted on: Nov 8, 2021
Published on: Nov 7, 2022
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Petrus H Potgieter, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.