Have a personal or library account? Click to login
Finding automatic sequences with few correlations Cover

Finding automatic sequences with few correlations

Open Access
|Jun 2022

References

  1. [1] J.-P. Allouche, On a Golay-Shapiro-like sequence, Unif. Distrib. Theory, 11 (2016) 205–210.
  2. [2] J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations.10.1017/CBO9780511546563
  3. [3] E. Grant, J. Shallit and T. Stoll, Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences, Acta Arith., 140 (2009) 345–368.
  4. [4] I. Marcovici, T. Stoll and P.-A. Tahay, Discrete correlations of order 2 of generalized Golay-Shapiro sequences: a combinatorial approach, Integers, 21 (2021), #A44.
  5. [5] M. Queffélec, Une nouvelle propriété des suites de Rudin-Shapiro, Ann. Inst. Fourier (Grenoble), 37 (1987) 115–138.
  6. [6] P.-A. Tahay, Discrete correlation of order 2 of generalized Rudin-Shapiro sequences on alphabets of arbitrary size, Unif. Distrib. Theory, 15 (2020) 1–26.
Language: English
Page range: 75 - 81
Submitted on: Mar 31, 2022
Accepted on: May 15, 2022
Published on: Jun 18, 2022
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Vincent Jugé, Irène Marcovici, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.