Have a personal or library account? Click to login
Asymptotic bit frequency in Fibonacci words Cover
Open Access
|Jun 2022

References

  1. [1] D. Bajic, On construction of cross-bifix-free kernel sets, 2nd MCM COST 2100, TD(07)237, Lisbon, Portugal, 2007.
  2. [2] J.-L Baril, S. Kirgizov and V. Vajnovszki, Gray codes for Fibonacci q-decreasing words, arXiv:2010.09505.
  3. [3] A. Bernini, S. Bilotta, R. Pinzani and V. Vajnovszki, A Gray code for cross-bifix-free sets, Math. Structures Computer Sci., 27 (2017) 184–196.10.1017/S0960129515000067
  4. [4] A. Brauer, On algebraic equations with all but one root in the interior of the unit circle. To my teacher and former colleague Erhard Schmidt on his 75th birthday, Math. Nachr., 4 (1950) 250–257.10.1002/mana.3210040123
  5. [5] Y. M. Chee, H. M. Kiah, P. Purkayastha and C. Wang, Cross-bifix-free codes within a constant factor of optimality, IEEE Trans. Inform. Theory, 59 (2013) 4668—4674.10.1109/TIT.2013.2252952
  6. [6] M. Cipu and F. Luca, On the Galois group of the generalized Fibonacci polynomial, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 9 (2001) 27—38.
  7. [7] F. Dubeau, On r-generalized Fibonacci numbers, Fibonacci Quart., 27 (1989) 221–229.
  8. [8] Ö. Eğecioğlu and V. Iršič, Fibonacci-run graphs I: Basic properties, Discrete Appl. Math., 295 (2021) 70–84.10.1016/j.dam.2021.02.025
  9. [9] I. Flores, Direct calculation of k-generalized Fibonacci numbers, Fibonacci Quart., 5 (1967) 259–266.
  10. [10] G. W. Grossman and S. K. Narayan, On the characteristic polynomial of the j-th order Fibonacci sequence, Applications of Fibonacci Numbers, 8, Springer, Dordrecht, 1999, pp. 165–177.10.1007/978-94-011-4271-7_17
  11. [11] K. Hare, H. Prodinger and J. Shallit, Three series for the generalized golden mean, Fibonacci Quart., 52 (2014) 307–314
  12. [12] D. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed., Addison-Wesley, 1998.
  13. [13] P. A. Martin, The Galois group of xn − xn − 1 − . . . − x − 1, J. Pure Appl. Algebra, 190 (2004) 213–223.10.1016/j.jpaa.2003.10.028
  14. [14] E. Miles, Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly, 67 (1960) 745–752.10.1080/00029890.1960.11989593
  15. [15] M. D. Miller, On generalized Fibonacci numbers, Amer. Math. Monthly, 78 (1971) 1108–1109.10.1080/00029890.1971.11992952
  16. [16] R. Sedgewick and P. Flajolet, An introduction to the analysis of algorithms, 2nd ed., Addison-Wesley, 2013.
  17. [17] E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287–302.10.7146/math.scand.a-10478
  18. [18] E. Rouché, Mémoire sur la série de Lagrange, Journal de l’École Polytechnique, 22 (1862) 193–224.
  19. [19] D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart., 36 (1998) 129–145.
Language: English
Page range: 23 - 30
Submitted on: Mar 31, 2022
Accepted on: May 15, 2022
Published on: Jun 18, 2022
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.